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Foreword

Those who spend their professional life developing and deploying — or observ-
ing — new information technology systems may believe that the security issues
raised in this process are a direct consequence of developments in technology.
This is not quite so. New technologies create opportunities for new appli-
cations, sometimes not even foreseen when the technology was first fielded.
Pertinent examples are e-mail, the first major application of the Internet and
its precursors (rather than the “serious” scientific collaborations originally in-
tended), or the success of SMS (Short Messaging Service), which was initially
perceived as a minor addition to the services offered by second-generation
mobile telecommunications systems.

At the same time, new technologies and the applications they are facili-
tating also open up new opportunities for creating mischief of various hues,
which in turn trigger a demand for “security technologies” that should pre-
vent — or at least reduce — unwelcome use of those new applications. To stay
with the example of e-mail, spam has today become a major nuisance, to the
extent that some see success in the battle against spam as essential for e-mail
to survive as a useful service.

For software systems, the release of the Internet for commercial use in the
early 1990s was an incisive event, whose implications have still not been fully
digested. It first led to the development of distributed applications in closed
environments that use the Internet as an open communications network. In
this domain, security requirements are mainly, but not exclusively, related to
communications security. Virtual Private Networks may serve as an example.
However, today we are also dealing with open environments without central
points of control or authority, which require novel ways of approaching se-
curity. Indeed, the fact that in different applications fundamentally different
security requirements have to be met is one of the reasons why the design of
security protocols is difficult and error prone.

All of which brings us to security. Security professionals like to state that
security must not be treated as an add-on feature, and that systems cannot
be made secure by adding some so-called security features in the later design



VIII  Foreword

stages. To the extent that security requirements depend on the application,
it is then the task of the application designer to include those requirements
in the specification early on, and the task of the design process to make
sure that adequate protection mechanisms are implemented. There is thus
an obvious demand for design methodologies that help in specifying secu-
rity requirements, and in making sure that suitable security mechanisms are
implemented.

To add a second general statement on security, there are hardly ever correct
answers to security challenges, only answers that are better or worse than
others. When proposing design methodologies for security, we are walking
a tightrope if security-unaware application writers are asked to decide on
matters of security. In application areas where security requirements are well
understood and met by a fairly standardized set of security mechanisms, we
may justifiably hope that such methodologies can be put to good use. However,
particularly in novel kinds of applications, we will not always know the security
requirements in advance, and prudent engineering practices may change over
time. As an example, robustness against denial-of-service attacks and identity
protection (plausible deniability) have become new aspects in the design of
key establishment protocols in recent years, as witnessed in the discussions
about a successor to the Internet Key Exchange protocol (IKE).

This book makes valuable contributions towards the development of well-
founded design methodologies for security engineering. By building on a widely
adopted specification language like UML, consideration of security aspects fits
into the design process in a natural way. The proposed methodology has solid
theoretical foundations so that it is possible to verify in a precise setting
whether a design has its desired security properties. The definition of these
foundations would in itself constitute a substantial piece of work, but the book
goes further. For any design methodology striving to have practical impact,
the proverbial saying that “the proof of the pudding is in the eating” applies.
The book does not fall short on this count either, covering several case studies
the methodology has been applied to, and presenting the tools that have been
developed to support this approach.

To say that this book is a first step in a promising direction would thus
seriously underrate what has already been achieved. The reader may treat this
book as an exemplary demonstration of how formal methods for the design of
secure systems could be made accessible to application software designers in
general, and wait with interest for further developments as the methodology
matures.

Hamburg, Dieter Gollmann
May 2004



Preface

Attacks against computer networks, which modern society and modern eco-
nomies rely on for communication, finance, energy distribution, and trans-
portation, can threaten the economical and physical well-being of people and
organizations. Due to the increasing interconnection of systems, such attacks
can be waged anonymously and from a safe distance. Thus networked com-
puters need to be secure.

The high-quality development of security-critical systems is difficult. Many
systems are developed, deployed, and used that do not satisfy their criticality
requirements, sometimes giving rise to spectacular attacks.

Part of the difficulty of secure systems development is that the goal of
correctness is often in conflict with that of low development cost. Where thor-
ough methods of system design pose high cost through personnel training and
use, they are all too often avoided.

The Unified Modeling Language (UML) offers an unprecedented opportu-
nity for high-quality and cost- and time-efficient secure systems development:

e As the de facto standard in industrial modeling, a large number of devel-
opers are trained in UML.

e Compared to previous notations with a user community of comparable
size, UML is relatively precisely defined.

e A variety of tools exist that provide the basic functionality required to use
UML (such as the drawing of UML diagrams).

To exploit this opportunity, however, some challenges remain: One needs
to adapt the UML to the application domain of security-critical systems and
advance its correct use in this application domain. One has to develope ad-
vanced tool support for secure systems development with UML, such as au-
tomatic analysis of UML specifications with respect to security requirements.
This requires dealing with conflicts between flexibility and unambiguity in the
meaning of UML models. This book aims to contribute to overcoming these
challenges.
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We present the UML extension UMLsec for secure systems development,
using the standard UML extension mechanisms. The possibility of a high de-
gree of abstraction, and diagrams offering different views of a system, allow
the modeling of security-critical components in the system context. One can
thus automatically evaluate UML specifications for vulnerabilities using the
UMLsec tool support based on a formal semantics of a simplified core of UML
1.5 which we also provide.! One may also encapsulate established rules of pru-
dent security engineering and make them available to developers. Our method
thus aims to be useful both to security experts and to developers who may not
be experts in security. We demonstrate the adequacy of UMLsec by using it
in several case studies. For example, we develop a secure channel specification
and uncover flaws in a published variant of the Internet protocol TLS and in
the Common Electronic Purse Specifications, propose corrections, and verify
them. We use UMLsec in the context of banking applications and of Java se-
curity. We present the concepts and technologies needed for constructing tool
support for analyzing UML models for sophisticated requirements, such as
the constraints included in UMLsec specifications. The tool support is based
on an XML dialect called XMI which allows interchange of UML models.

This book is based on a PhD thesis, several invited talks and summer
school lectures, a series of about thirty tutorials at international conferences
and feedback from many of their participants, and about thirty articles in in-
ternational journals and at conferences by the author, as well as on feedback
from projects with industrial partners (including a major German bank, car
manufacturer, and telecommunications company), and on discussions at inter-
national workshops organized on the topic of model-based security engineering
with UML, as well as the supervision of about thirty Master’s and Bachelor
theses and advanced study projects on related topics and seven courses given
at the University of Oxford and TU Miinchen which included part of the top-
ics covered in this book. Additional material is given on the website [Jiir04]
associated with this book which is continuously being updated. It includes
the following material:

e Slides and audio recordings from the tutorials and courses mentioned
above.
Other learning and teaching materials, including exercises and answers.
A web interface for a tool which analyzes UMLsec models written using
an industrial UML modeling tool (which one can upload over the Internet)
for security requirements.?

Note that although the UML extension proposed in this book aims to also offer
assistance to developers who are not security experts (for example, by enabling
them to use security mechanisms in a secure way), parts of the book are

! In the appendix, we explain how to adjust our approach to the upcoming version
UML 2.0.
2 The tool is currently being made available as open-source.
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concerned with advanced applications (such as the analysis of cryptographic
protocols) for which background knowledge in security would be helpful.

I would like to express my sincerest gratitude to all of the people involved
in some way or another with the above undertakings, and with the compila-
tion of this book in particular. These include my advisor for the PhD thesis on
which this book is based, Samson Abramsky (for his insights and advice, en-
couragement, and patience), as well as Manfred Broy, head of my subsequent
affiliation being the Software & Systems Engineering group at TU Munich (for
interesting discussions, for sharing his profound experience in formal methods
and software engineering, and for providing a very stimulating working envi-
ronment), various people who provided encouragement to pursue the idea to
write a book based on the thesis, my coauthors and colleagues (for fruitful col-
laborations, and inspiring discussions on security or UML), my students (for
helpful collaborations on tool support and for questions on dubious parts of
the material), several people reading various portions of the draft and offering
useful comments and advice, as well as the many reviewers of the papers on
which this book is based, altogether several hundred participants of my tuto-
rials, as well as the audiences of my other talks related to security or UML,
many of whom contributed comments and questions. I would also like to thank
the members of different organizations in which I am involved (including the
working group for Formal Methods and Software Engineering for Safety and
Security (FOMSESS) within the German Society for Informatics (GI), the Di-
vision of Safety and Security within the GI, the Bavarian Competence Center
for Safety and Security, the working group on e-Security of the Bavarian re-
gional government, and the IFIP Working Group 1.7 “Theoretical Foundations
of Security Analysis and Design”) for interesting discussions about security,
the technical support at TU Munich (including the system administrators
and the student assistants, in particular Britta Liebscher). Last but not at all
least I would like to thank my editor at Springer-Verlag, Ralf Gerstner, for
his interest in the book project and his enduring and understanding patience.
Apologizing to those who currently manage to escape my mind, I would like to
name in particular the following: Martin Abadi, Lionel Van Aertryck, Ewgeny
Alter, Axelle Apvrille, David Basin, Peter Braun, Matthias Braun, Ruth Breu,
Alexander Chatzigeorgiou, Dominique Chauveau, Pierpaolo Degano, Martin
Deubler, Rik Eshuis, Andreas Fedrizzi, Eduardo B. Fernandez, Robert France,
Onno Garms, Geri Georg, Andreas Gilg, Dieter Gollmann, Roberto Gorrieri,
Susanne Graf, Johannes Griinbauer, Joshua Guttman, Sebastian Hohn, Helia
Hollmann, Siv Hilde Houmb, Anna lIoshpe, Gergely Kokavecz, Dimitri Kopjev,
Thomas Kuhn, Simon Kulla, Markus Lehrhuber, Britta Liebscher, Wolfgang
Linsmeier, Volkmar Lotz, Gavin Lowe, Frank Marschall, Shasha Meng, Carlo
Montangero, Haris Mouratidis, Gerhard Popp, Max Raith, Jan Romberg,
Bernhard Rumpe, Robert Sandner, Robert Schmidt, Marillyn Schwaiger,
Stephan Schwarzmiiller, Bran Selic, Pasha Shabalin, Shunwei Shen, Oscar
Slotosch, Perdita Stevens, Martin Strecker, Guido Wimmel, and Bo Zhang.
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Finally, I particularly thank my parents and my brother for their continued
moral support.

This work was financially supported in part by the Studienstiftung des
deutschen Volkes, Laboratory for Foundations of Computer Science (Univer-
sity of Edinburgh), Bell Laboratories (Lucent Technologies), Computing Lab-
oratory (University of Oxford), Software & Systems Engineering (TU Mu-
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Two roads diverged in a wood, and I,
I took the one less traveled by,
And that has made all the difference.

Robert Frost, The Road Not Taken
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1

Introduction

A Need for Security

Modern society and modern economies rely on infrastructures for communi-
cation, finance, energy distribution, and transportation. These infrastructures
depend increasingly on networked information systems. Attacks against these
systems can threaten the economical or even physical well-being of people
and organizations. There is widespread interconnection of information sys-
tems via the Internet, which is becoming the world’s largest public electronic
marketplace, while being accessible to untrusted users. Attacks can be waged
anonymously and from a safe distance. If the Internet is to provide the plat-
form for commercial transactions, it is vital that sensitive information (like
credit card numbers or cryptographic keys) is stored and transmitted securely.

Problems

Developing secure software systems correctly is difficult and error-prone. Many
flaws and possible sources of misunderstanding have been found in protocol or
system specifications, sometimes years after their publication or use. For ex-
ample, the observations in [Low95] were made 17 years after the well-known
Needham—Schroeder authentication protocol had been published in [NS78].
Many vulnerabilities in deployed security-critical systems have been exploited,
sometimes leading to spectacular attacks. For example, as part of a 1997 ex-
ercise, an NSA hacker team demonstrated how to break into US Department
of Defense computers and the US electric power grid system, among other
things simulating a series of rolling power outages and 911 emergency tele-
phone overloads in Washington, DC, and other cities [Sch99a]. While there
are of course many more recent examples of security breaches, this particular
example also shows that there is more to be concerned about than website
defacements and creditcard misuse.

Computer breaches do significant damage, as a study by the Computer
Security Institute shows: Ninety percent of the respondents detected com-
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puter security breaches within the last 12 months. Forty-four percent of them
were willing and able to quantify the damage. These 223 firms reported
$455,848,000 in financial losses [Ric03].

Causes

Firstly, enforcing security requirements is intrinsically subtle, because one has
to take into account the interaction of the system with motivated adversaries
that act independently. Thus security mechanisms, such as security protocols,
are notoriously hard to design correctly, even for experts. Also, a system is
only as secure as its weakest part or aspect.

Secondly, risks are very hard to calculate: security-critical systems are
characterized by the fact that the occurrence of a successful attack at one
point in time on a given system dramatically increases the likelihood that the
attack will be launched subsequently at another system. This problem is made
worse by the existence of the Internet as a mass communication medium that
is currently largely uncontrolled and enables fast and anonymous distribution
of information on successful exploits.

Thirdly, many problems with security-critical systems arise from the fact
that their developers, who employ security mechanisms, do not always have
a strong background in computer security. This is problematic since, in prac-
tice, security is compromised most often not by breaking dedicated mecha-
nisms such as encryption or security protocols, but by exploiting weaknesses
in the way they are being used [And01]: According to A. Shamir, the Israeli
state security apparatus is not hampered in its investigations by the fact that
suspects may use encryption technology that may be virtually impossible to
break. Instead, other weaknesses in overall computer security can be exploited
[Sha99]. As another example, the security of Common Electronic Purse Spec-
ifications (CEPS) [CEPO01] transactions depends on the assumption that it is
not feasible for the attacker to act as a relay between an attacked card and
an attacked terminal. However, this is not explicitly stated, and it is further-
more planned to use the CEPS over the Internet, where an attacker could
easily act as such a relay. This is investigated in Sect. 5.3. As a last example,
[Wal00] attributes the failures in the security of the mobile phone protocol
GSM among other reasons to the failure to acknowledge limitations of the
underlying physical security, such as misplaced trust in terminal identity and
the possibility to create false base stations.

Thus it is not enough to ensure correct functioning of security mechanisms
used. They cannot be “blindly” inserted into a security-critical system, but
the overall system development must take security aspects into account in
a coherent way [SS75]. More specifically, one can say that “those who think
that their problem can be solved by simply applying cryptography don’t un-
derstand cryptography and don’t understand their problem” (R. Needham).
In fact, according to [Sch99a], 85% of Computer Emergency Response Team
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(CERT) security advisories [CER] could not have been prevented just by mak-
ing use of cryptography. Thus, given the current state of software security, just
using encryption to protect communication still leaves most weaknesses unre-
solved, and has been compared to using an armored car to deliver credit card
information “from someone living in a cardboard box to someone living on a
park bench” [VM02]. Building trustworthy components does not suffice, since
the interconnections and interactions of components play a significant role in
trustworthiness [Sch99a).

Lastly, while functional requirements are generally analyzed carefully in
systems development, security considerations often arise after the fact. Adding
security as an afterthought, however, often leads to problems [Gas88, And01].
Also, security engineers get little feedback about the secure functioning of
their products in practice, since security violations are often kept secret for
fear of harming a company’s reputation.

It has remained true over the last 30 years since the seminal paper [SS75]
that no coherent and complete methodology to ensure security in the con-
struction of large general-purpose systems exists yet, in spite of very active
research and many useful results addressing particular subgoals [Sch99a], as
well as a large body of security engineering knowledge accumulated [And01].
Such a methodology would allow the computer security engineer to construct
a system in a way similar to how a civil engineer would build a bridge. In
contrast, today ad hoc development leads to many deployed systems that
do not satisfy important security requirements. Thus a sound methodology
supporting secure systems development is needed.

Traditional Approaches

In practice, the traditional strategy for security assurance has been “pene-
trate and patch”: It has been accepted that deployed systems contain vulner-
abilities. Whenever a penetration of the system is noticed and the exploited
weakness can be identified, the vulnerability is removed. Sometimes this is
supported by employing friendly teams trained in penetrating computer sys-
tems, the so-called “tiger teams” [Wei95, McG98].

For many systems, this approach is not ideal: Each penetration using a
new vulnerability may already have caused significant damage, before the
vulnerability can be removed. For systems that offer strong incentives for
attack, such as financial applications, the prospect of being able to exploit a
discovered weakness only once may already be enough motivation to search for
such a weakness. System administrators are often hesitant to apply patches,
especially in critical systems, since applying the patch may disrupt the service
[And01]. Having to create and distribute patches costs money and leads to
loss of customer confidence. Patches may contain security threats themselves,
such as the FunLove virus in a Microsoft hotfix distributed in April 2001
[Mic01, The01].
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It would thus be preferable to consider security aspects more seriously in
earlier phases of the system life-cycle, before a system is deployed, or even
implemented, because late correction of requirements errors costs up to 200
times as much as early correction [Boe81].

The difficulty of designing security mechanisms correctly has motivated
quite successful research using mathematical concepts and tools to ensure
correct design of small security-critical components such as security proto-
cols, including [MCF87, BAN89, Mea91, Low96, Pau98b, AG99]. The goal is
to establish crucial requirements on the specification level through formaliza-
tion and proof, which may be mechanically assisted or even automated. Note
that it is not possible to actually prove a system secure in an absolute sense:
Proofs can only be performed with respect to models which are necessarily
abstractions from reality. Attackers can always try to go beyond the limita-
tions of a given model to still attempt an attack. Nevertheless, a model-based
security analysis is useful, because certain attacks can be prevented and the
required effort for successful attacks increased. Also, often problems with a
specification are detected just by trying to make it sufficiently precise for
formal analysis [Gol03a].

Unfortunately, due to a perceived high cost in personnel training and use,
formal methods have not yet been employed very widely in industrial develop-
ment [Hoa96, Hei99, KK04]. To increase industry acceptance in the context of
security-critical systems, it would be beneficial to integrate security require-
ments analysis with a standard development method, which should be easy
to learn and to use [CW96]. Also, security concerns must inform every phase
of software development, from requirements engineering to design, implemen-
tation, testing, and deployment [DS00b].

Some other challenges for using sound engineering methods for secure sys-
tems development exist. Currently a large part of effort both in analyzing and
implementing specifications is wasted since these are often formulated impre-
cisely and unintelligibly, if they exist at all [Pau98al. If increased precision by
use of a particular notation brings an additional advantage, such as automated
tool support for security analysis, this may however be sufficient incentive for
providing it. Since software developers cannot expect to learn a particular for-
mal method to do this, because of limited resources in time and training, one
needs to instead use the artifacts that are at any rate constructed in industrial
software development. Examples include specification models in the Unified
Modeling Language (UML). Also, the boundaries of the specified components
with the rest of the system need to be carefully examined, for example with
respect to implicit assumptions on the system context [Gol00, Aba00]. Lastly,
a more technical issue is that formalized security properties are not always
preserved by refinement, which is the so-called refinement problem [RSG101].
Since an implementation is necessarily a refinement of its specification, an im-
plementation of a secure specification may, in such a situation, not be secure,
which is clearly undesirable. Also, it hinders the use of stepwise development,
where one starts with an abstract specification and refines it in several steps
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to a concrete specification which is implemented, allowing mistakes to be de-
tected early in the development cycle, and thus leading to considerable savings:
Without preservation of security by refinement, developing secure systems in
a stepwise manner requires one to redo the security analysis after each refine-
ment step. Hence, we need formalizations of security requirements that are
indeed preserved under refinement.

Model-Based Security Engineering with UML

Towards a solution of the problems mentioned in the previous sections, we pro-
pose an approach for model-based security engineering using the Unified Mod-
eling Language (UML) [RJB99, UMLO03]. We explain our motivation firstly
for choosing this kind of approach and secondly for using the UML notation.

Generally, in model-based development, as represented in Fig. 1.1, the idea
is to first construct a model of a system, which should be as close to human
intuition as possible and is typically relatively abstract. In a second step, the
implementation is derived from the model: either automatically using code
generation, or manually, in which case one can still generate test sequences
from the model to establish conformance of the code regarding the model.
The goal is to increase the quality of the implemented code while keeping the
implementation cost and the time-to-market bounded.

Requirements

Verify ;

Models

Codegeneration - Testgeneration

Code

Fig. 1.1. Model-based development

For security-critical systems, this approach allows one to consider secu-
rity requirements from early of in the development process, within the de-
velopment context, and in a seamless way throught the development cycle.
Using the model-based approach, one can, firstly, establish that the system
fulfills the relevant security requirements on the design level, by analyzing the
model. Secondly, one can check that the code is also secure by generating test
sequences from the model.
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UML now offers an, as such probably unprecedented, opportunity as a no-
tation for a high-quality model-based development of security-critical systems
that is feasible in an industrial context:

e As the de facto standard in industrial modeling notations, a large number
of developers are trained in UML, and this number is still growing because
UML is widely taught at universities. Thus, a UML specification may
already be available for security analysis, or less difficult to obtain than
other notations.

e UML provides graphical, intuitive description techniques with multiple
views of a system through different kinds of diagrams. It offers standard
extension mechanisms (such as stereotypes, tags, constraints, and profiles)
which one can use to tailor the notation to a specific application domain.

e Compared to previous notations with a user community of comparable
size, UML is relatively precisely defined, since [UMLO03] defines syntax
and semantics of the UML notation in a relatively high degree of detail,
although not entirely formal.

e A variety of tools exist that provide the basic functionality required to use
UML, such as the drawing of UML diagrams.

Note that although UML was developed to model object-oriented systems,
one may use it just as well to analyze systems that are not object-oriented,
by thinking of objects as components and not making use of object-oriented
features, such as inheritance.

To exploit this opportunity, however, some challenges remain: One needs
to adapt the UML to the application domain of security-critical systems and
advance its correct use in this application domain. One has to develope ad-
vanced tool support for secure systems development with UML, such as au-
tomatic analysis of UML specifications with respect to security requirements.
This requires dealing with conflicts between flexibility and unambiguity in the
meaning of UML models.

This book aims to contribute to overcoming these challenges. More specifi-
cally, it presents the UML extension UMLsec for secure systems development.
The UMLsec extension:

e allows one to evaluate UML specifications for security weaknesses on the
design level,

e encapsulates established rules of prudent security engineering in the con-
text of a widely known notation, and thus makes them available to devel-
opers who may not be security experts,

e allows the developer to consider security requirements from early on in the
system development process, and

e involves little additional overhead, since the UML diagrams can serve as
system documentation, which is always desirable to have, and sometimes
required (for example, for security certifications).
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1.1 Overview

The UMLsec extension

We present an extension of the UML [UMLO03] for secure systems development,
called UMLsec. Recurring security requirements (such as secrecy, integrity,
and authenticity) are offered as specification elements by the UMLsec exten-
sion. The properties are used to evaluate diagrams of various kinds and to
indicate possible vulnerabilities. One can thus verify that the stated security
requirements, if fulfilled, enforce a given security policy. One can also ensure
that the requirements are actually met by the given UML specification of the
system. UMLsec encapsulates knowledge on prudent security engineering and
thereby makes it available to developers who may not be experts in security.

The extension is given in form of a UML profile using the standard UML
extension mechanisms. Stereotypes are used together with tags to formulate se-
curity requirements and assumptions on the system environment. Constraints
give criteria that determine whether the requirements are met by the system
design, by referring to a precise semantics mentioned below.

The extension has been developed based on experiences on the model-
based development of security-critical systems in industrial projects involving
German government agencies and major banks, insurance companies, smart
card and car manufacturers, and other companies. Note that an extension of
UML to an application domain such as security-critical systems that aims to
include requirements from that application domain as stereotypes, as opposed
to just adding specific architectural primitives, can probably never be fully
complete: It would then have to incorporate all existing design knowledge
on security-critical computing systems, which fills countless books. Therefore,
here we focus on providing a core profile that includes the main security
requirements. We expect this to be extended with additional, more specific
concepts (for example, from more specialized application domains such as
mobile security).

We list the requirements on a UML extension for secure systems develop-
ment and discuss how far our extension meets these requirements. We explain
the details of the extension by means of examples, demonstrate how to em-
ploy the extension for enforcing established rules of secure systems design and
show how to use UMLsec to apply security patterns.

Applications

To validate our approach using UMLsec for secure systems development, we
investigate the degree to which it is suitable for enforcing established rules of
prudent security engineering. We consider several case studies:

e We demonstrate stepwise development of a security-critical system with
UMLsec as the example of a secure channel design, together with a math-
ematically precise verification.
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e We uncover a flaw in a variant of the handshake protocol of the Internet
protocol TLS proposed in [APS99], suggest a correction, and verify the
corrected protocol.

e We apply UMLsec to a security analysis of CEPS, a candidate for a glob-
ally interoperable electronic purse standard. We discover flaws in the two
central parts of the specifications (the purchase and the load protocol),
propose corrections, and give a verification of the corrected versions.

e  We show how to use UMLsec to correctly employ advanced Java 2 security
concepts such as guarding objects in a way that allows formal verification
of the specifications.

e We also report on a project with a major German bank, where we applied
our ideas about model-based development of security-critical systems to a
web-based banking application.

There are further applications in industrial development projects which be-
cause of space limitations can only shortly be mentioned.

Tool Support

For the ideas that we present in this book to be of benefit in practice, it is
important to have advanced tool support to assist in using them. We present
the necessary background to construct such tool support, as well as the tool
suite that has been developed [JSAT04]. The developed tools can be used to
check the constraints associated with UMLsec stereotypes mechanically, based
on XMI output of the diagrams from the UML drawing tool in use, and using
sophisticated analysis engines that as model-checkers and automated theorem
provers. For this, the developer creates a model using a UML drawing tool
capable of XMI export and stores it as an XMI file. The file is imported by the
UMLsec analysis tool (for example, through its web interface) which analyses
the UMLsec model with respect to the security requirements that are included.
The results of the analysis are given back to the developer, together with a
modified UML model, where the weaknesses that were found are highlighted.

We also explain a framework for implementing verification routines for the
constraints associated with the UMLsec stereotypes. The goal is that advanced
users of the UMLsec approach should be able to use this framework to im-
plement verification routines for the constraints of self-defined stereotypes. In
particular, the framework includes the UMLsec tool web interface, so that new
routines are also accessible over this interface. The idea behind the framework
is to provide a common programming framework for the developers of differ-
ent verification modules. A tool developer should be able to concentrate on
the implementation of the verification logic and not be required to implement
the user interface.

Furthermore, we present research on linking the UMLsec approach with
the automated analysis of security-critical data arising at runtime. Specifically,
we present research on the construction of a tool which automatically checks
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the SAP R/3 configuration for security policy rules, such as separation of duty.
The permissions are given as input in an XML format through an interface
from the SAP R/3 system, the rules are formulated as UML specifications
in a standard UML CASE tool and output as XMI, as part of the UMLsec
framework mentioned above. The tool then checks the permissions against the
rules using an analyzer written in Prolog. Because of its modular architecture
and its standardized interfaces, the tool can be adapted to check security
constraints in other kinds of application software, such as firewalls or other
access control configurations.

As noted, for example, in [Fow04], the ultimate benefit in software devel-
opment is not “pretty pictures”, but the running implementation of a system.
We present some approaches for linking UML models to implementations,
such as model-based testing. The aim is to ensure that the benefits gained
from the model-based approach on the level of the system model, such as in-
creased confidence in satisfaction of critical requirements, actually carry over
to the implemented system.

To provide tool support for analyzing UMLsec models with respect to the
security properties included as predefined constraints, tool developers need to
formulate the properties in a mathematically precise way. This is only possi-
ble if the UML specification they refer to also has a mathematically precise
meaning. In particular, this concerns the behavioral aspects, since many se-
curity requirements refer to the system behavior. For this goal, we provide a
precise execution semantics for a simplified part of UML using so-called UML
Machines. These are based on Abstract State Machines which give a mathe-
matically rigorous yet rather flexible framework for modeling computing sys-
tems [Gur95]. UML Machine Systems allow us then to build up UML Machine
specifications in a modular way and to treat external influences on the system
beyond the planned interaction, such as attacks on insecure communication
links. This allows a rather natural modeling of potential adversary behavior
and to define different kinds of adversary strengths. On this basis, important
security requirements such as secrecy, integrity, authenticity, and secure infor-
mation flow are defined. To support stepwise development, we show secrecy,
integrity, authenticity, and secure information flow to be preserved under re-
finement. Because of the modular way UML Machines are defined, they give
a formal framework for formally analyzing security-critical systems in their
own right, independently of the UML notation.

Based on this, we provide a precise semantics for a simplified core of UML
that allows one to use a more focussed kind of UML subsystems to group
together several diagrams. The precise semantics for a restricted version of
subsystems incorporates the precise semantics of the diagrams contained in
a subsystem in a way that allows them to interact by exchanging messages.
The statechart semantics which is part of it is based on part of the state-
chart semantics from [BCRO0O0]. The motivation is to concentrate on a core of
UML for which it is feasible to construct and use advanced tool support. The
UMLsec case studies mentioned above demonstrate that our choice of a subset
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of UML is useful. We also consider some helpful concepts, such as consistency
between diagrams, different kinds of refinement of and equivalence between
UML specifications, and the use of rely-guarantee specifications.

Via UML Machines and UML Machine Systems we make use of the pre-
sented treatment of security-critical systems. In particular, UML specifications
can be evaluated using the attacker model, which incorporates the possible
attacker behaviors, to find vulnerabilities.

1.2 Outline

Here is an outline of the following chapters:

Chapter 2: For a short “walk-through” to highlight the UMLsec approach,
we consider a simplified model of an Internet-based business application
as a running example.

Chapter 3: Some background information is recalled that is needed in the
remainder of the book.

Chapter 4: After discussing requirements on a UML extension for secure sys-
tems development, we present the UMLsec profile. We show how to for-
mulate security requirements on a system and security assumptions on the
underlying layer in UMLsec. It is explained how to evaluate the system
specification against the security requirements, by referring to the precise
semantics sketched in Chap. 3. We demonstrate how to employ the exten-
sion for enforcing established rules of secure systems design and how to
use UMLsec in order to apply security patterns.

Chapter 5: At the example of a secure channel design, we demonstrate step-
wise development of a security-critical system with UMLsec. We uncover
a flaw in a variant of the handshake protocol of the Internet protocol
TLS proposed in [APS99], suggest a correction, and verify the corrected
protocol. Furthermore, we use UMLsec for a security analysis of CEPS, a
candidate for a globally interoperable electronic purse standard. We dis-
cover three flaws in the two central parts of the specifications, propose
corrections, and give a verification. We show how to use UMLsec to cor-
rectly employ advanced Java 2 security concepts such as guarded objects.

Chapter 6: The necessary background for developing tool support for UMLsec
is explained. We present a tool which automatically checks a UMLsec
model with respect to the security requirements associated with the
UMLsec stereotypes, based on XML output of industrial UML draw-
ing tools. A framework is presented which allows advanced users to con-
veniently include verification routines for the constraints of self-defined
stereotypes. As an instance of this framework, we present a tool which
links the UMLsec approach with the automated analysis of security-
critical data arising at runtime, such as permissions in SAP R/3 systems.
We explain approaches for linking UML models to implementations, such
as model-based testing.
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Chapter 7: We introduce UML Machines and UML Machine Systems and
define notions of refinement and rely-guarantee specifications. We explain
how we use UML Machines to specify security-critical systems. In par-
ticular, we give definitions for secrecy, integrity, authenticity, and secure
information flow, and give equivalent internal characterizations to simplify
verification. We show secrecy, integrity, authenticity, and secure informa-
tion flow to be preserved under refinement.

Chapter 8: We use UML Machines and UML Machine Systems to give a pre-
cise semantics for a simplified part of UML. This semantics is used to give
consistency conditions for different diagrams in a UML specification. Also,
we define notions of refinement and behavioral equivalence, and investigate
structural properties, such as substitutivity. We consider rely-guarantee
properties for UML specifications and their structural properties.

Chapter 9: An account of other approaches to security engineering with a
similarly sound basis is given.

Chapter 10: We conclude with a critical evaluation of the approach we pre-
sented and an outlook on future developments.

Appendices: We explain how to adjust our approach to the upcoming version
UML 2.0, give the formal definition of UML Machine rules and the proofs
for the statements from Chaps. 5, 7, and 8.

1.3 How to Use this Book

Being the first book on the topic of secure systems development with UML,
this book was written with two audiences in mind:

e researchers and graduate students interested in UML, computer-aided soft-
ware engineering or formal methods, and IT security, who may use the
book as background reading for their own research in using UML for crit-
ical systems development, or in building advanced tool support for UML

e advanced software developing professionals as the intended users of the
approach proposed in this book.

Some basic knowledge in computer security and UML would be helpful. This
knowledge is recalled in Sections 3.1 and 3.2, and pointers to background
reading are given.

For the benefit of the second group, we deferred the material on the se-
mantics of UML to the end of the book in Chaps. 7 and 8. These can then
be left out by people who are not interested in constructing advanced tool
support for UML by themselves. The information in Sect. 3.3 about the used
semantics of UML is sufficient to understand the remaining chapters.

Note that the UML extension proposed in this book aims to offer assistance
also to developers who are not security experts, for example, by enabling them
to use security mechanisms in a secure way. Nevertheless, parts of the book



14 1 Introduction

are concerned with advanced applications, such as cryptoprotocol analysis,
for which some background knowledge in security would be helpful.

The material in this book has been used extensively for teaching students,
as well as researchers and software developers. For example, full-day tutorials
for practitioners have been delivered based on the material in Chaps. 3 and 4
and Sects. 6.2 and 6.4. For a two-day course, one can also include Chap. 5. A
Masters-level student course could also cover Chaps. 7 and 8.

Additional material is given on a website [Jiir04] associated with this book
which is continuously being updated. It includes the following material:

e Slides and audio recordings from the tutorials and courses based on this
book.
Other learning and teaching material, including exercises and answers.
A web interface for a tool which analyzes UMLsec models for security
requirements. These models can be written using an industrial UML mod-
eling tool and uploaded over the Internet.
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Walk-through: Using UML for Security

For a quick impression of what this book is about, we give a short “walk-
through” through a small part of the UMLsec notation to highlight the
UMLsec approach, considering a simplified model of an Internet-based busi-
ness application as a running example. For readers who find themselves lack-
ing background on computer security and on the Unified Modeling Language
(UML), it is briefly recalled in Chap. 3. The UMLsec extension is then defined
and explained in more detail in Chap. 4, as well as the examples shown in this
chapter.

A central idea of the UMLsec extension is to define labels for UML
model elements, the so-called stereotypes, which, when attached, add security-
relevant information to these model elements. This security-relevant informa-
tion can be of the following kinds:

e Security assumptions on the physical level of the system, such as the
«Internet » stereotype shown below.

e Security requirements on the logical structure of the system (such as the
«secrecy » stereotype) or on specific data values (such as the «critical»
stereotype).

e Security policies that system parts are supposed to obey, such as the
«fair exchange», «secure links», « data security », or « no down — flow » ste-
reotypes.

In the first two cases, the stereotypes simply add some additional information
to a model. They can be attached to any diagram of the relevant kind. In
the third case, there are constraints associated with a stereotype that have
to be fulfilled by a diagram so that it can justifiably carry the stereotype.
If such a stereotype is attached to a diagram which does not meet this con-
straints, this results in an incorrect model, as in the case of the «secure links »,
«data security », and «no down — flow» stereotypes below. This prompts the
tool support available for UMLsec [JSAT04], described in Chap. 6, to au-
tomatically point out the mistake, which should then be corrected by the
developer.
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2.1 Security Requirements Capture with Use Case
Diagrams

Use case diagrams are commonly used to describe typical interactions between
a user and a computer system in requirements elicitation. They may also be
used to capture security requirements.

To start with our example, Fig. 2.1 shows a use case diagram describing the
following situation: a customer buys a good from a business. The trade should
be performed in a way that prevents both parties from cheating. We include
this requirement in the diagram by adding a stereotype «fair exchange» to
the subsystem containing the use case diagram. A more detailed explanation
of what the requirement represented by this stereotype means in this specific
situation, and of the activities associated with the use cases, is given in the
following subsection.

«fair exchange»

Sales application

buys good
sells good

Customer Business

Fig. 2.1. Use case diagram for business application

2.2 Secure Business Processes with Activity Diagrams

Activity diagrams can be used to model workflow and to explain use cases in
more detail. Similarly, they can be used to make security requirements more
precise.

Following our example, Fig. 2.2 explains the use case in more detail by
giving the business process realizing the above two use cases. The requirement
« fair exchange » is now formulated by referring to the activities in the diagram.
Intuitively, the actions listed in the tags {start} and {stop} should be linked
in the sense that if one of the former is executed then eventually one of the
latter will be. This property can be checked automatically.

This would entail that, once the customer has paid, either the order is
delivered to the customer by the due date, or the customer is able to reclaim
the payment on that date.



2.3 Physical Security Using Deployment Diagrams 17

Purchase «fair exchange» !_L\
{start={Pay}} {stop={Reclaim,Pick up}}

Customer Business

Request good

Wait until
delivery due

undelivered : delivered

o)
Reclaim /4

Fig. 2.2. Purchase activity diagram

2.3 Physical Security Using Deployment Diagrams

Deployment diagrams are used to describe the physical layer of a system. We
use them to check whether the security requirements on the logical level of
the system are enforced by the level of physical security, or whether additional
security mechanisms (such as encryption) have to be employed.

Continuing with our example, the business application is part of an e-
commerce system, which is supposed to be realized as a web application. The
payment transaction involves transmission of data to be kept secret (such as
credit card numbers) over Internet links. This information on the physical
layer and the security requirement is reflected in the UML model in Fig. 2.3.

«secure links»

remote access
————— {adversary=default}

client machine | «secrecy» | server machine
get_password RS B

client apps «call»

b
% «Internet»

Fig. 2.3. Example secure links usage

web server

access control
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We then use the stereotype «secure links» to express the demand that secu-
rity requirements on the communication are met by the physical layer. More
precisely, for each dependency stereotyped « secrecy» between subsystems or
classes on different nodes n, m, and any communication link between n and
m with some stereotype s, the threat scenario arising from the stereotype s
with regard to an adversary of a given strength should not violate the secrecy
requirement on the communicated data. This constraint will be defined more
precisely and explained in detail in Chap. 4. For now we only note that in the
given diagram, this constraint associated with the stereotype «secure links»
is already violated when considering standard adversaries, because plain In-
ternet connections can be eavesdropped easily, and thus the data that is com-
municated does not remain secret. For this adversary type, the stereotype
«secure links» is thus applied wrongly to the subsystem, which is pointed out
automatically by the UMLsec tool presented in Chap. 6.

2.4 Security-Critical Interaction with Sequence
Diagrams

Sequence diagrams are used to specify interaction between different parts of
a system. Using UMLsec stereotypes, we can extend them with information
giving the security requirements relevant to that interaction. For example,
this enables one to see whether cryptographic session keys exchanged in a key
exchange protocol remain confidential from possible adversaries.

With regard to our example, based on the security analysis in the previous
subsection we decide to create a secure channel for the sensitive data that
has to be sent over the untrusted networks, by making use of encryption. As
usual, we first exchange symmetric session keys for this purpose. Let us assume
that, for technical reasons, we decide not to use a standard and well-examined
protocol such as SSL but instead a customized key exchange protocol such as
the simplified one in Fig. 2.4. The goal is to exchange a secret session key K,
using public keys K¢ and Ks, which is then used to encrypt the secret data s
before transmission. Here {M} is the encryption of the message M with the
key K, Signg(M) is the signature of the message M with K, and :: denotes
concatenation. A detailed explanation of the figure and the protocol can be
found in Sect. 5.2.

Note that the UMLsec model of the protocol given in Fig. 2.4 is similar
to the traditional informal notation, for example, used in [NS78]. In that
notation, the protocol would be written as follows:

C—S:N;, Kc,Sigan—l(C = Ke)
S—>C: {SignKS—1(kj i Ni)}Kc,Sigan—Al(S i Ks)
C—>S: {Si}kj-
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Secure channel ~ «datasecurity» L

C:Client «critical» S:Server «critical»
frecrecy={sKc ]} {fresh={N}} fsecrecy={K5 K]} {fresh=(K}}
{integrity={s,N,Kc,Kc ", Kca,i}} - | {integrity={Ks,K; ' Kca,K,j}}
{authenticity=(k,S)} «send»

j: Data; Ks,KS ' Kca,K : Keys
S,S,N,i:Data;Kc,KEl,KCA:Keys J S,fs HCA Yy

<~ «send> | init(n:Data,k:Key,cert:Exp)

resp(shrd:Exp,cert:Exp) - xchd(mstr-Exp)

C:Client S:Server

init(N, Kc, SignKE1(C :: Ke))

resp({SignKs_l(K =Nz Ke) b,
SiganAl(S i Ks))

xchd({s}k)

Fig. 2.4. Key exchange protocol

We argue in Sect. 5.2 that the traditional notation needs to be interpreted
with care and that the UMLsec notation can be seen to be more precise and
to lead over more easily to an implementation.

One can now again use stereotypes to include important security require-
ments on the data that is involved. Here, the stereotype « critical » labels classes
containing sensitive data and has the associated tags {secrecy}, {integrity},
{authenticity}, and {fresh} to denote the respective security requirements on
the data. The constraint associated with «data security» then requires that
these requirements are met with respect to the given adversary model. We
assume that the standard adversary is not able to break the encryption used
in the protocol, but can exploit any design flaws that may exist in the pro-
tocol, for example by attempting so-called “man-in-the-middle” attacks. This
is made precise for a generic adversary model in Sect. 3.3.4. Technically, the
constraint then enforces that there are no successful attacks of that kind. Note
that it is highly non-trivial to see whether the constraint holds for a given pro-
tocol. However, using well-established concepts from formal methods applied
to computer security in the context of UMLsec, it is possible to verify this
automatically.
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2.5 Secure States Using Statechart Diagrams

Statechart diagrams, showing the changes in state throughout an object’s
life, can be used to specify security requirements on the resulting sequences
of states and the interaction with the object’s environment.

As the last station in our quick walk-through, we now assume that for
privacy reasons, it should remain secret how much money a customer spends
at the website. We thus consider the simplified specification of the customer
account object in Fig. 2.5. The object has a secret attribute money containing
the amount of money spent so far by a given customer. It can be read using
the operation rm() whose return value is also secret, and increased by placing
an order using the operation wm(x). If the object is in the state ExtraService
since the amount of money spent already is over 1000, there is special func-
tionality offered at the website providing the customer with complimentary
extra services. There is an associated operation rx() to check whether this
functionality should be provided. In the specification shown in Fig. 2.5, this
operation is not assumed to be secret.

Now we use the stereotype « no down-flow» to indicate that the object
should not leak out any information about secret data, such as the money at-
tribute. Unfortunately, the given specification violates this requirement, since
partial information about the input of the secret operation wm() is leaked out
via the return value of the non-secret operation rx(). Thus the model carries
the stereotype illegitimately. Again this can be detected automatically, and it
is another example for a constraint which is infeasible to verify without tool
support, for specifications of the size arising in practice.

Customer account ~ «Nno down—flow» L,

rm(): Data rm()/return(money) rm()/return(money)
wm(x: Data)

rx(): Boolean

rx()/return(false)

NoExtraService

Account  «critical» N wm(x)

{high={wm‘rm,money}} [money>:1000]

money: Integer /money:=0

rm(): Data /money:= [money<1000]
wm(x: Data) monéy+x wm(x)
rx(): Boolean

Fig. 2.5. Customer account data object
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Background

We briefly present some important concepts used in the course of this book
and give references to more comprehensive background reading.

Some previous knowledge of computer security and of UML may be help-
ful since an in-depth introduction has to be omitted. Below, we give some
suggestions for background reading. Of course, there are many more good in-
troductory references on these topics. We also briefly recall the main concepts
needed for our purposes.

3.1 Security Engineering

We now explain some issues in computer security engineering that will play
a role in this book. For background reading on these topics, good textbooks
include [Gol99, And01], as well as [VMO02] with an emphasis on software.!
[APG95] contains interesting essays on the topic. “Classic” references on se-
curity engineering include [SS75, Gas88, AN96]. A good introduction to cryp-
tography can be found, for example, in [MvOV96, GB99]. A classic book on
database security and integrity is [ERW81].

Communication over open, unprotected networks is often prone to attacks.
In the case of the Internet, it is relatively easy to read or delete messages
that are exchanged, or to insert other messages. In wireless networks, it is
even easier at least to read or insert messages, in physical proximity of the
network. Secure communication over untrusted networks thus requires specific
mechanisms such as encryption and cryptographic protocols. A cryptographic
protocol is a description of a message exchange, which includes cryptographic
data, for establishing a secure relationship between the protocol participants,
such as a secure communication channel. As pointed out in the introduction,
cryptographic protocols are very difficult to design and prone to very subtle
errors.

! For the German-speaking audience, we also recommend [Eck03].
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Apart from attacking the communication links in a distributed system,
an adversary may also try to directly attack the physical system nodes, if
physical access is possible. Given sufficient time, it is also usually easy to get
access to data or to manipulate the data or the behavior of unprotected system
components which lack special protection. In systems, where adversaries may
get in possession of security-critical nodes (for example, if adversaries may be
system users), one therefore often uses specially protected hardware such as
smart-cards assumed to be tamper-proof.

The model-based security engineering approach presented in this book has
been designed for object-oriented and component-oriented systems. In particu-
lar, object-orientation is suitable as a conceptual basis for secure systems: they
are equipped with a general mechanism for controlling access to data, namely
method calls, and offer information hiding by encapsulating data in objects.
The data encapsulated in an object can only be accessed through objects, and
messages are the only way to communicate. Note, however, that to offer pro-
tection, these mechanisms have to be implemented within the object-oriented
execution environment in a way that can withstand motivated attacks and so
that the mechanisms cannot be circumvented. More information on this can
be found in [Gol99, ch. 17].

A security policy summarizes the protection requirements of a system. We
recall below some important security requirements and concepts which will
be considered in the course of this book.

Fair Exchange

When trading goods electronically, the fair exchange requirement postulates
that the trade is performed in a way that prevents the participating parties
from cheating. If for example buyer has to make a prepayment, the buyer
should be able to prove having made the payment and to reclaim the money
if that good is subsequently not delivered.

Non-repudiation

One way of providing fair exchange is by using the security requirement of non-
repudiation of some action, which means that this action cannot subsequently
be successfully denied. That is, the action is provable, usually with respect to
some trusted third party.

Role-based Access Control

An important mechanism for controlling access to protected resources is the
concept, of role-based access control. In order to keep permissions manageable,
especially in systems with a large or frequently changing user-base, they are
not directly assigned to users. Instead, users can have one or more roles often
related to their function within an organisation, and then permissions are
assigned to roles.
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Secure Communication Link

Sensitive communication between different parts of a system needs to be pro-
tected. The relevant requirement of a secure communication link is here as-
sumed to preserve secrecy and integrity for the data in transit.

Secrecy and Integrity

Two of the main data security requirements are secrecy (or confidentiality)
and integrity. Secrecy of data means that the data should be read only by
legitimate parties. Integrity of data means that it should be modified only by
legitimate parties.

Authenticity

There are different variants of this third main security requirement. Two im-
portant ones are message authenticity and entity authenticity. Message au-
thenticity (or data origin authenticity) means that one can trace back some
piece of data to what its original source was, at some point in the past. Entity
authenticity ensures that one can identify a participant in a protocol, and in
particular make sure that the party has actually actively participated in the
protocol at the time. The process providing authenticity is called authentica-
tion.

Freshness

A message is fresh if it has been created during the current execution round
of the system under consideration (for example, during the current protocol
iteration) and therefore cannot be a replay of an older message by the ad-
versary. A nonce is a random value that is supposed to be used only once
(hence the name), for example to establish that a certain message containing
a recently created nonce is itself freshly constructed.

Secure Information Flow

A traditional way of ensuring security in computer systems is to design multi-
level secure systems [LB73]. In such systems, there are different levels of sen-
sitivity of data. For simplicity, one usually considers two security levels: high,
meaning highly sensitive or highly trusted, and low, meaning less sensitive or
less trusted. Where trusted parts of a system interact with untrusted parts,
one has to ensure that there is no indirect leakage of sensitive information
from a trusted to an untrusted part. To ensure this, one enforces the “no
down-flow” policy: low data may influence high data, but not vc. vs.. The
opposite of this condition, “no up-flow”, enforces that untrusted parts of a
system may not indirectly manipulate high data: high data may influence low
data, but not vc. vs.. These security requirements, called secure information
flow or non-interference [GM84], are rather stringent definitions of secrecy
and integrity which can detect implicit flows of information that are called
covert channels [Lam73].
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Guarded Access

One of the main security mechanisms is access control, which ensures that
only legitimate parties have access to a security-relevant part of the system.
Sometimes, access control is enforced by guards: in the case of the Java Secu-
rity Architecture, guard objects control access to protected objects; similarly
for the access decision objects in CORBA.

3.2 Unified Modeling Language

The Unified Modeling Language (UML) [RJB99] is the de facto industry
standard for specifying object-oriented software systems, also suitable for
component-oriented systems. It is a graphical language that may be used to
specify architectural and behavioral aspects of software. Good introductions
to UML can for example be found in [SP99, Fow04].? Here, we consider its
current version UML 1.5 [UMLO03]3.

UML diagrams describe various views on different parts of a system design.
There are several kinds of diagrams, describing different aspects of a system
at varying degrees of abstraction. In this book, we use the following kinds:

Use case diagrams describe an abstract view of the functionality offered by
a system by specifying typical interactions with the user. They are often
used in an informal way for negotiation with a customer before a system
is designed.

Class diagrams define the static class structure of the system: classes with
attributes, operations, and signals and relationships between classes. On
the instance level, the corresponding diagrams are called object diagrams.

Statechart diagrams (or state diagrams) give the dynamic behavior of an in-
dividual object or component: events may cause a change in state or an
execution of actions. They are an adaptation of Harel’s statecharts [HG97].

Sequence diagrams describe interaction between objects or system compo-
nents via message exchange, in particular method calls.

Activity diagrams specify the control flow between several components within
the system, usually at a higher degree of abstraction than statecharts and
sequence diagrams. They can be used to put objects or components in the
context of overall system behavior or to explain use cases in more detail.

Deployment diagrams describe the mapping of the system components to the
physical structure of the system.

Subsystems (a certain kind of packages) integrate the information between
the different kinds of diagrams and between different parts of the system
specification.

2 For German-speaking readers, we also recommend [Bre01, Rum04].
3 Some remarks on the upcoming version UML 2.0 can be found in Appendix A.
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In addition to sequence diagrams, there are collaboration diagrams, which
present similar information. Also, there are component diagrams, presenting
part of the information contained in deployment diagrams. These two kinds of
diagrams are omitted here to simplify the presentation, although they could
be used with our approach as well.

For each kind of diagram, we will only need a relatively simple fragment
of its various notational elements. In the following few subsections, we will
informally explain only those features of the above kinds of diagrams which
are needed in this book. There are many other diagram elements. Although
they can also be used in the context of our approach, we will not need them
in our presentation.

3.2.1 Use Case Diagrams

Use case diagrams can be used to structure the functionality of a system and
to represent interactions between a system and a user in an abstract way. Use
case diagrams contain use cases and actors. A use case is a coherent group
of interactions belonging to a particular usage of the system. An actor has
a name and defines a set of roles of entities. Entities can, for example, be
humans or other computer systems. A role of a human could for example
be Customer, as in Fig. 3.1. A link from an actor to a use case means that
the system that the use case is part of is supposed to provide the service
represented by the use case to any entity in the role represented by the actor.
The intention is that instances of use cases and instances of actors interact
when the services of the described system are used. One uses other kinds
of diagrams, such as activity diagrams or sequence diagrams, to specify this
interaction in more detail. As with the other diagram kinds, there are many
more model elements, and these could also be used with our approach, such
as the extends and includes relationships.

An example of a use case is given in Fig. 3.1. There, a Customer actor is
supposed to perform a buys good use case and a Business actor is supposed to
perform a sells good use case.

buys good
sells good

Customer Business

Fig. 3.1. Use case diagram
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3.2.2 Class Diagrams

An object is an “entity with a well-defined boundary and identity that en-
capsulates state and behavior. State is represented by attributes and relation-
ships, behavior is represented by operations, methods, and state machines. An
object is an instance of a class” [UMLO03, p. Glos.-10]. A class is a “descrip-
tion of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify
collections of operations it provides to its environment” [UMLO03, p. Glos.-4].
We use class diagrams to present the classes and their interfaces used in a
system, together with their relationships, such as dependencies. A modeling
element depends on another modeling element if a change to the latter might
affect the former.

In the diagrammatic notation, a class is represented by a rectangle with
three compartments giving its name, its attributes, and its operations. An
object is displayed in the same way, except that the name is underlined. This
notational mechanism is also used in other kinds of diagrams to distinguish
between the type and instance levels. Dependencies between classes are writ-
ten as broken arrows with an open arrow-head. Interfaces are represented by
the interface specification, which is a rectangle labeled « Interface » containing
the operations and signals offered by the interface, with a broken arrow with
a closed head coming from the class implementing the interface. A label set in
« » in a UML diagram is called a stereotype; see Sect. 3.2.8 for an explanation
of the concept of UML stereotypes. As shorthand, one may omit the inter-
face specification and instead write a circle attached to the class rectangle.
A dependency arrow stereotyped « call» (resp. « send») from a class dep to a
class indep indicates that instances of class dep may call operations of (resp.
send signals to) instances of class indep. In particular, the instance of class
dep knows of the instance of class indep. If the arrow points to an interface of
indep, dep may only call the operations or send the signals listed in the corre-
sponding interface specification. For example, in Fig. 3.2, Sender may send the
signal transmit with argument d to Receiver, but an object accessing Receiver
through the interface receiving would only be able to call the operation receive
with no arguments, and get a return value of type Data.

As a convention, we distinguish constant attributes by underlining the
attribute type. We use the further convention that constant attributes are
named by their value. Thus we can leave out the explicit assignment of initial
values to constant attributes. For example, K : Keys specifies a constant of
value K € Keys.

3.2.3 Statechart Diagrams

UML statechart diagrams are used to describe state machines, which specify
the sequences of states that an entity, such as an object or component, can go
through in response to events, together with its responding actions [UMLO3].
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«Interface» «Interface»
sending receiving
send(d:Data) receive():Data

) g
‘.| Sender «send» Receiver /

receive():Data

send(d:Data) transmit(d:Data)

Fig. 3.2. Class diagram

They are derived from the statecharts proposed by Harel [HG97]. They consist
of states and transitions between states.

A state is “a condition or situation during the life of an object during which
it satisfies some condition, performs some activity, or waits for some event”
[UMLO3, p. Glos.-14]. States are indicated by boxes which contain the name
of the state. They may contain entry (resp. exit) actions that are executed on
entry (resp. exit) of the state. A state may be divided into sequential (resp.
concurrent) substates and is then called a sequential composite state (resp.
a concurrent composite state). When a sequential composite state is active,
exactly one of its sequential substates is active. When a concurrent state is
active, all of its concurrent substates are active. A statechart diagram and its
subdiagrams contain each an initial state and may contain one or more final
states, denoted by a solid circle and a circle containing a small solid circle,
respectively. Final states may not be present in the case of non-terminating
behavior, like in Fig. 3.3.

A transition with label e[g]/a indicates that an object in the first state
will perform the action a and enter the target state when the event e occurs
and the guard condition g is satisfied, that is, the transition fires. The guard
can be a logical formula, involving for example equality = and inequality #
between data expressions and logical connectives such as A (conjunction), V
(disjunction), - (negation), and = (implication). The action could be to call
an operation or send a signal, written as call(op(args)) resp. send(sig(args)),
or to assign a value to an attribute, written as att := wval. In the case of
an operation call or a signal transmission, the keywords call() and send() are
usually omitted from the diagram for readability; instead only the operation
or signal name and the arguments are given. Generally, the name of a message
sent to an object obj has the name obj as a prefix; this may also be omitted
if no confusion can arise. Transitions with the same source and target object
may be internal, which means that they are fired without invoking entry or
exit actions and internal activities executed as long as the state is active. The
intuition behind internal transitions is that they model a response to an event
that does not change the state of an object.
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A simple example is given in Fig. 3.3. The statechart consists of three
states named Wait, Request, and Send (without substates, actions, or activi-
ties) and an initial state. At the start of the execution of the statechart, the
Wait state is entered and as an entry action the attribute i incremented. When
the message send arrives, its argument is stored in the variable d, the message
request is sent out, and the state Request is entered. Subsequently, when the
return message is received, its two arguments are stored in the variables K and
C and the state Send is entered. Then, if the condition £xtk , (C) = R::K holds,
the message transmit({d::i}k) is sent and the state Wait is entered again.*

entry/i:=i+1 |_Send(d) Request
Wait /request()

return(K,C)
[Ertk, (C) = R:K]
Jtransmit({d::i}k)

Fig. 3.3. Statechart diagram

3.2.4 Sequence Diagrams

A sequence diagram “shows object interactions arranged in time sequence.
In particular, it shows the objects participating in the interaction and the
sequence of messages exchanged. A sequence diagram can exist in a generic
form (describes all possible scenarios) and in an instance form (describes one
actual scenario)” [UMLO03, p. Glos.-13]. Essentially, a sequence diagram spec-
ifies interaction among a set of objects or components, the names of which are
given in the first line of the diagram. There are vertical lines down from each
name, called life lines. When the object is active, this is signified by drawing
a box rather than a line for that period of time down the sequence diagram.
There are arrows, so-called connections, with attached messages between the
life lines that specify that the attached message is supposed to be sent from
the object from whose life-line the arrow emerges to the other object. For
readability, the prefix obj of the name of a message sent to an object obj may
be omitted, since it is implicit in the sequence diagram. For each method msg
in the diagram and each number n, msg,, represents the nth argument of the
operation call msg that was most recently accepted according to the sequence
diagram. We do not simply use the expressions appearing as arguments of the
messages here, since an adversary may modify the transmitted value. Note

4 Note that the meanings of these cryptographic expressions is irrelevant here but
will be explained in Sect. 3.3.3.
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that in statechart diagrams this is realized automatically, since the different
statecharts have separate namespaces. To increase readability, we allow the
definition of syntactic shorthands in the diagram of the form var ::= exp where
var is a local variable not used for any other purpose and ezp may not contain
var. Before assigning a semantics to the diagram, the variable var should be
replaced by the expression erp at each occurrence. For example, k is writ-
ten as a shorthand for the cryptographic expression fst(Extk: (Dechl(ck)))

in Fig. 3.4.5 There may also be conditions associated with arrows, written in
square brackets [], which have to be fulfilled when the diagram is executed,
otherwise the execution does not proceed at the relevant arrow. Note that the
sender or receiver of a message may not be part of the sequence diagram. In
that case, the arrows point into or out from the diagram.

An example of a sequence diagram is given in Fig. 3.4. It specifies a se-
curity protocol between two permanently active objects, C of class Client and
S; of class Server. The protocol starts with the client C sending the mes-
sage init with the three arguments N;, K¢, and Sigan—l(C:: Kc) to the server
S;. If the condition snd(&xtk (cc)) = K’ is fulfilled, where cc is a shorthand
for init3, the server S; proceeds by sending the message resp with arguments
{Sz’gnKs_l(kj ::N’)}Kz,Sigan—Al (S::Ks) back to the client C. The client in turn
checks the condition on the left hand side of the diagram and, if it holds,
finishes the protocol by sending the message xchd back to the server. If any
of the conditions are not fulfilled, the execution of the diagram stops at the
relevant point. This protocol is explained in more detail in Sect. 5.2.

C:Client S,:Server

init(Ni, Kc, S’ignKE1(C = Ke))

resp ({SignKS_1 (kj::N")}r,

Sigan;(S“KS)) [snd (Extw (cc))

=K
[fst(Extk,(cs)) =SA xchd({si }«) |
snd(Extkn (DecKC_1(ck)))
= Ny] U U
CK ::=resp1 N'::=init;
oS i res K’ :=init,
K" :=snd(&xtk, (cs)) ez inits

k::=fst(Extyr (Dechl(ck)))
Fig. 3.4. Sequence diagram

% Again, the meanings of these cryptographic expressions is irrelevant here but will
be explained in Sect. 3.3.3.
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3.2.5 Activity Diagrams

A UML 1.x activity diagram is a special case of a statechart diagram that is
used to model processes involving one or more objects or components, whose
execution is coordinated by the activity diagram [UMLO03, p. 3-156].6 Con-
current composite states are written using synchronization bars, such that for
each concurrent composite state S, transitions from the initial states of the
concurrent substates of S are replaced by transitions from a synchronization
bar in the activity diagram, and the lines delineating the concurrent states are
omitted. Similarly, transitions to the final states of the concurrent substates
of S, where they exist, are replaced by transitions to a synchronization bar.

Activity diagrams can be partitioned into swimlanes, each carrying the
name of the object and its class, or of the component the behavior of which
is modeled by the activities in the swimlane. We assume that the partition
is well-defined in the sense that an activity in the swimlane labeled with the
component C only accesses the data in C. For readability, we may omit the
object name prefixes from attribute names, since they are given as the label
of the swimlane.

States in activity diagrams can be of the following kinds. A state without
internal activity, internal transitions, exit action, or outgoing non-completion
transitions, and with at least one outgoing completion transition, is called an
action state [UMLO03, p. 2-171]. A state whose internal activity models the
execution of a non-atomic sequence of steps that has some duration is called a
subactivity state [UMLO3, p. 2-174]. Action and subactivity states are written
as boxes with straight top, and bottom, and convex arcs as sides.

An example for an activity diagram in given in Fig. 3.5. There, three
objects C, L and | are executed concurrently. For C, the activity c is iterated
until the counter nt has reached the value limit. Similarly, for L , the activity
| is iterated until the counter n has reached the value limit. For |, the activity
i is simply iterated indefinitely.

3.2.6 Deployment Diagrams

A deployment diagram is a “diagram that shows the configuration of run-
time processing nodes and the components, processes, and objects that live
on them” [UMLO3, p. Glos.-6]. The nodes are displayed as boxes, which may
be connected by solid lines representing communication links. A node may
contain components shown as rectangles with two smaller rectangles inserted
on the left side. Components may be connected by broken arrows representing
communication dependencies, as in class diagrams. They may possess inter-
faces and contain class or subsystem models. Thus, links represent physical
communication links between different nodes in a system, while dependencies
describe logical connections between components.

6 See Appendix A for the changes in the upcoming version UML 2.0.
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C:Card L:LSAM l:Issuer
Cntry/nt—j Cntry/n O>
( entry/> < entry/ )

nt:=nt+1 n:=n+1

nt<I|m|t n<||m|t

Fig. 3.5. Activity diagram

An example is given in Fig. 3.6. The diagram contains two node instances,
client machine and server machine: the node instance client machine contains
a component instance client apps with interface get_password, which in turn
contains an object browser; the node instance server machine contains a com-
ponent instance web server, which contains an object access control. The two
node instances are connected by a link stereotyped «Internet», and there is
a dependency from the web server component to get_password stereotyped
«secrecy ». The latter stereotype is already part of the UMLsec extension
defined in Sect. 4.1.2. Thus, the web server is specified to be able to commu-
nicate with the browser, to request the password, and this is made possible
by an Internet connection.

client machine
get_password o
client apps «call» B

browser

| «secrecy» | server machine

web server

access control

«Internet»

Fig. 3.6. Deployment diagram

3.2.7 Subsystems

A package is a notational means of simplifying the presentation of UML di-
agrams. One can group together parts of a model, represented by diagrams,
into a package. Then only the package symbol, and not the represented group
of diagrams, has to be shown in the overall diagram.
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Here we make use of a specific kind of package called a subsystem, which is
a “grouping of model elements that represents a behavioral unit in a physical
system” [UMLO3, p. Glos.-15]. A subsystem modeling the complete system
under consideration, rather than just a part, is called a system. Subsystems
can have interfaces and can be connected to other subsystems using depen-
dencies in so-called static structure diagrams. In the left upper corner of a
subsystem, one can specify the operations that can be called from outside the
subsystem. One can distinguish between realization and specification elements
in a subsystem; visualizing this distinction is optional and not considered here.

An example for a subsystem is shown in Fig. 3.7. The Channel subsystem
instance contains two objects Sender and Receiver, as specified in the class
diagram. As the deployment diagram shows, they reside on different node
instances. Each has a simple associated statechart diagram specifying its be-
havior. As specified in the activity diagram, both statecharts are executed
concurrently. The Channel subsystem instance offers the operations send and
receive to its environment.

3.2.8 UML Extension Mechanisms

UML offers three main “light-weight” language extension mechanisms: ste-
reotypes, tagged values, and constraints [UML03]. We do not consider the
“heavy-weight” approach using meta-model extensions here. Stereotypes de-
fine new types of modeling elements extending the semantics of existing types
or classes in the UML meta-model. Their notation consists of the name of
the stereotype written in double angle brackets « », attached to the extended
model element. This model element is then interpreted according to the mean-
ing ascribed to the stereotype. An example for a stereotype is the «critical»
stereotype attached to the Sender object in Fig. 3.7, which will be defined in
Chap. 4. The earlier restriction that at most one stereotype can be assigned
to any model element has been dropped since UML 1.4 [UML03].

One way of explicitly defining a property is by attaching a tagged value
to a model element. A tagged value is a name—value pair, where the name
is referred to as the tag. The corresponding notation is {tag = value} with
the tag name tag and a corresponding value to be assigned to the tag. Tags
can define either data values, so-called DataTags, or references to other model
elements, so-called ReferenceTags. If the value is of type Boolean, one usually
omits {tag = false}, and writes {tag} instead of {tag = true}. An example
for a tagged value is the {secrecy} tag with value the set {d} associated with
the «critical » stereotype attached to the Sender object in Fig. 3.7.

Another way of adding information to a model element is by attaching
constraints. These constraints have to be fulfilled by the relevant diagram part.
As an example, the «data security » stereotype in Fig. 3.7 has an associated
constraint defined in Chap. 4.

Stereotypes can be used to attach tagged values and constraints as
pseudo-attributes of the stereotyped model elements. They are called pseudo-
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Channel «data security»
{adversary=default}

send(d:Data)

receive():Data . -

. /transmit(d
S:Sender | R:Receiver

transmit(d

2
receive()

( s ) < ' ) /return(d

«Interface» . «Interface»
sending receiving
send(d:Data) receive():Data

% 4
: << iti » - i /
\ |S:Sender «ritical> | o | R:Receiver .
\ {secrecy=({d}} | " > /
\
receive():Data
send(d:Data) transmit(d’:Data)
Sendernode «LAN» Receivernode «LAN»
Sendercomp Receivercomp
S:Sender «encrypted> R:Receiver
| | «send»

Fig. 3.7. Subsystem

attributes because their semantics is outside the scope of the UML definition.
All model elements labeled by a particular stereotype receive the correspond-
ing values and constraints in addition to the attributes, associations, and
superclasses that the element has in the standard UML. This usage is new
from UML 1.4 [UMLO3].

To construct an extension of the UML one collects the relevant definitions
of stereotypes, tagged values, and constraints into a profile [UML03], which is
a stereotyped package (alternatively, [CKM™99] suggests the use of so-called
prefaces). A profile:

e identifies a subset of the UML meta-model,

o gives “well-formedness rules”, that is a set of constraints, for this subset,

e gives a semantics in natural language beyond that given by the identified
subset, and
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e lists common model elements.

Examples for UML extensions include the UML Profile for Software Devel-
opment Processes [UMLO03], the UML Profile for Business Modeling [UMLO03],
and extensions for real-time [SR98] and frameworks [FPRO00].

3.3 Analyzing UML Models

In the definition of the UMLsec profile, we need to formulate constraints on
the UML models that model security requirements that can be rather subtle.
To check them mechanically, one needs to refer to an analyzable model of the
behavioral semantics of the used fragment of UML. In this section, we define
and explain those properties of such a model which we need for formalizing the
constraints in the UMLsec profile. For security analysis, the security-relevant
information from the security-oriented stereotypes is then incorporated. The
complete behavioral semantics of the fragment of UML we use is given in
Chap. 8, based on the UML Machines introduced in Chap. 7, together with
more explanation and examples. That later chapter is intended for readers
interested in building sophisticated tool support for UML themselves; for those
mainly interested in using UMLsec, the information in the present section is
sufficient.

3.3.1 Notation

We assume the usual definitions from elementary set theory and logic, which
may be found for example in [AGMO00], including the following definitions.

N is the set of non-negative integers. N,, the set of non-negative integers
up to and including n, for any n € N. P(X) is the set of subsets of a set X.

Given a sequence (or list) I = (l1,l2,13,...), we write head(l) for its head
Iy and tail(l) for its tail (I2,13, ...). We write [] for the empty list, in particular
for the empty string.

A multi-set (or bag) is a set which may contain multiple copies of an
element, with notation { } instead of the usual brackets. For example,
{1,1,1,1,1,1,1,1,1,1 } is the multi-set consisting of ten copies of the ele-
ment 1. For two multi-sets M and N, M & N denotes their union and M \ N
the subtraction of N from M. For a multi-set M and a set X, we write M\ X
for the multi-set of those elements in M, preserving their cardinalities, that
are also elements of X. Intuitively, in M\ X, all elements except those in X
are filtered out. We write M C N for two multi-sets M, N if M\N = M. We
write | M| for the set of elements in the multi-set A and §M for the number
of elements in M.
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3.3.2 Outline of Formal Semantics

In UML, both objects and system components can communicate by exchang-
ing messages from a given set Events. The arrival of such a message is called
an event. They consist of the message name from a given set MsgNm, and
possibly arguments to the message. Message names may be prefixed with
object or subsystem instance names from a given set UMNames. The ar-
guments are assumed to be elements of a given set Exp of expressions.
An example for such a set is defined in Sect. 3.3.3. Each object or com-
ponent may receive messages in an input queue and release messages to
an output queue. Thus in our model, every object or subsystem instance
O has associated multi-sets inQuo, called the input queue, and outQug,
called the output queue.” Our formal semantics models sending a message
msg = op(exp,,...,exp,) € Events from an object or subsystem instance S
to an object or subsystem instance R as follows:

(1) S places the message R.msg into its multi-set outQug.

(2) A scheduler distributes the messages from output queues to the intended
input queues, while removing the message head. In particular, R.msg is
removed from outQug and msg added to inQug.

(3) R removes msg from its input queue and processes its content.

In the case of operation calls, we also need to keep track of the sender to allow
sending return signals. This way of modeling communication allows for a very
flexible treatment. For example, we can modify the behavior of the scheduler
to take account of knowledge on the underlying communication layer. This
allows us to consider security issues in Sect. 3.3.4, but also other aspects,
such as ordering or delay of messages.

At the level of single objects, behavior is modeled using statecharts or
sequence diagrams. The internal activities contained as states of these state-
charts can, for example, be defined using statecharts or sequence diagrams.

Using subsystems, one can then define the behavior of a system component
C by including the behavior of each of the objects or components directly
contained in C, and by including an activity diagram that coordinates the
respective activities of the various components and objects.

Thus for each object or component C of a given system, our semantics
defines a so-called UML machine [C], which is a state machine that commu-
nicates with its environment using messages.

Specifically, the behavioral semantics [D] of a statechart diagram D mod-
els the run-to-completion semantics of UML statecharts. As a special case,
this gives us the semantics for activity diagrams. Any sequence diagram S
gives us the behavior [S.C] of each contained component C.

Subsystems group together diagrams describing different parts of a system:
a system component C given by a subsystem S may contain subcomponents

" We use multi-sets rather than sets, because several copies of the same message
can be received concurrently.
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C1,...,Cp. These subcomponents may communicate through the communica-
tion links in the corresponding deployment diagram. On the semantical level,
each link has a corresponding link queue storing the messages that are ex-
changed along the link while in transit. The behavioral interpretation [S] of
S is a UML Machine defined as follows:

(1) It takes a multi-set of input events.

(2) The events are distributed from the input multi-set and the link queues
connecting the subcomponents and given as arguments to the functions
defining the behavior of the intended recipients in S.

(3) The output messages from these functions are distributed to the link
queues of the links connecting the sender of a message to the receiver, or
given as the output from [S] when the receiver is not part of S.

When performing security analysis, after the last step, the adversary model
may modify the contents of the link queues in a certain way explained in
Sect. 3.3.4.

An execution of a UML subsystem S is then a sequence of states and
the associated multi-sets of input and output messages of [S]. In general,
UML specifications may be non-deterministic, for example because several
transitions in a statechart diagram may be able to fire at a given point in
time. A subsystem 7 is a black-box refinement of a subsystem S if every
observable input/output behavior of 7 is also an input/output behavior of
S. T is a delayed black-box refinement of S if every observable input/output
behavior of T differs from an input/output behavior of S only in that delays
may be introduced.

3.3.3 Modeling Cryptography

We introduce some definitions to be used in modeling cryptographic data in
a UML specification and its security analysis.

We assume a set Keys with a partial injective map ( )~! : Keys —
Keys. The elements in its domain, which may be public, can be used for
encryption and for verifying signatures. Those in its range, usually assumed
to be secret, are used for decryption and signing. We assume that every key is
either an encryption or decryption key, or both: any key k satisfying k~! = k
is called symmetric; the others are called asymmetric. We assume that the
numbers of symmetric and asymmetric keys are both infinite. We fix infinite
sets Var of variables and Data of data values. We assume that Keys, Var,
and Data are mutually disjoint and that the set Data contains the names:
UMNames U MsgNm C Data. Data may also include nonces, introduced
in Sect. 3.1, and other secrets.

We recall that a term algebra generated by a set of elements and operations
is the set of terms formed by applying the operations to the elements. A
quotient of a term algebra under a given set of equations is derived from the
term algebra by imposing these equations, and those that can be derived from

1
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them, on the terms. Then the algebra of cryptographic expressions Exp is the
quotient of the term algebra generated from the set Var UKeys U Data with
the operations:

o __ (concatenation)

e head(.) and tail(_) (head and tail of a concatenation)
e {1} (encryption)

o Dec () (decryption)

o Sign () (signing)

o St () (extracting from signature)

o Hash(.) (hashing)

by factoring out the equations:

Decg-1({E}k) = E (for all E € Exp and K € Keys)

Eatg (Signg-1(E)) = E (for all E € Exp and K € Keys)

and the usual laws regarding concatenation, head(), and tail():

— (By i Ey) i Es = Ey :: (B9 iz E3) (for all Ey, Es, E5 € Exp)

— head(E; :: Ey) = E; (for all expressions Ej, Es € Exp) and

— tail(E; :: Ez) = Ey (for all expressions E, E» € Exp such that there
exist no E,E' with E; = E :: E'). For all other cases, head() and
tail() are undefined.

For each E € Exp, we use the following abbreviations:

o fst(E) & head(E)

e snd(E) def head(tail(E))
e thd(E) Y head(tail(tail(E))).

We use this abstract model of cryptographic algorithms which abstracts
away the details on the level of bit sequences, in order to keep the mechanical
analysis feasible. This symbolic model for cryptographic operations, following
an established approach initiated by [DY83], implies that we assume cryp-
tography to be perfect, in the sense that an adversary cannot “guess” an en-
crypted value without knowing the decryption key. In particular, we assume
that symmetric encryption is implemented in a way that provides data in-
tegrity, for example using Message Authentication Codes (MACs) [MvOV96],
since “encryption without integrity-checking is all but useless” [Bel98]. Also,
we assume that one can detect whether the correct key is used for decryption.
See for example [AJ01] for a formal discussion of these assumptions.

Note also that our model captures the fact that security-critical data such
as keys and nonces are usually assumed to be independent: This means that
no equations should hold between them from which an adversary could derive
information, such as K = K’ + 1 for two different keys K, K' € Keys. This
follows from the fact that the algebra of expressions is the quotient of a free
algebra under the equations given above, in particular, only equations that
follow from these equations hold in Exp.
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Based on this formalization of cryptographic operations, important con-
ditions on security-critical data (such as freshness, secrecy, integrity, and au-
thenticity) can then be formulated at the level of UML diagrams in a mathe-
matically precise way, explained in Sect. 4.1.

In the following, we will often consider subalgebras of Exp. These are
subsets of Exp which are closed under the operations used to define Exp,
such as concatenation, encryption, decryption, etc.. For each subset £ of Exp
there exists a unique smallest Exp-subalgebra (E) containing F, which we
call Exp-subalgebra generated by E. Intuitively, it can be constructed from E
by iteratively adding all elements in Exp reachable by applying the operations
used to define Exp above. It can be seen as the knowledge one can obtain from
a given set E of data by iteratively applying publicly available operations to
it and will be used to model the knowledge an attacker may gain from a set
E of data obtained for example by eavesdropping on Internet connections.

3.3.4 Security Analysis of UML Diagrams

In this section, we explain the security analysis machinery underlying the
UMLsec approach as far as needed in the first half of this book. More details
needed for the second half will be given in Sect. 7.5.

Our modular UML semantics allows a rather natural modeling of potential
adversary behavior. We can model specific types of adversaries that can attack
different parts of the system in a specified way. For example, an attacker of
type insider may be able to intercept the communication links in a company-
wide local area network. We model the actual behavior of the adversary by
defining a class of UML Machines that can access the communication links
of the system in a specified way. To evaluate the security of the system with
respect to the given type of adversary, we consider the joint execution of the
system with any UML Machine in this class. This way of reasoning allows an
intuitive formulation of many security properties. Since the actual verification
is rather indirect this way, we also give alternative intrinsic ways of defining
security properties below, which are more manageable, and show that they
are equivalent to the earlier ones.

Thus for a security analysis of a UML subsystem specification, we need to
model potential adversary behavior. It should be possible to model specific
types of adversaries that can attack different parts of the system in a specified
way. For this, we firstly define the set of abstract threats {delete, read, insert,
access} arising from a specification of the physical layer of a system. Following
the discussion of possible adversary actions in Sect. 3.1, the delete, read, and
insert threats mean that an adversary may delete, read or insert messages on a
communication link, respectively. The access threat represents the possibility
that an adversary may directly access a physical system node. We then assume
a function Threats4(s) which takes an adversary type A and a stereotype s
and returns a subset of {delete, read,insert,access}. In the context of UML,
these functions arise from the specification of the physical layer of the system
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under consideration using deployment diagrams, as explained in Sect. 4.1.
The idea is thus that Threats4(s) specifies the threat scenario associated with
an adversary type A against a component or link stereotyped s. On the one
hand, the threat scenario determines, which data the adversary can obtain
by accessing components; on the other hand, it determines, which actions
the adversary is permitted by the threat scenario to apply to the concerned
links. From the abstract threats we derive the more basic concrete threats used
for modeling and analyzing the possible adversary behavior. This is done by,
firstly, requiring that an adversary needs to have access to the system part to
be attacked. For example, to attack a wireless network, the adversary needs
to be in physical proximity. Secondly then, the access threat with respect to a
node contained in this system part is broken down to the atomic actions delete,
read, and insert with respect to the communication links connected to these
nodes: If an adversary can access a node, this means that he may delete, read
or insert messages on the communication links connected to this node. For a
link or node z in a deployment diagram in a UML subsystem specification S,
we thus define the set threatsi(x) of concrete threats from adversaries of type
A to be the smallest set satisfying the following conditions.

If each node n containing = carries a stereotype s, with access €
Threats(s,,) then:®

e For every stereotype s attached to z, we have Threats(s) C threatsS ().
e If x is a link connected to a node that carries a stereotype ¢ with access €
Threats 4 (¢) then {delete, read, insert} C threats$ (z).

Then we model the actual behavior of an adversary adv of type A as a
type A adversary machine. Essentially, this is a UML Machine which has the
following data, where we give a slightly simplified account sufficient to define
the UMLsec notation and semantics:?

e A set of states State with a control state control € State.
o A set of current adversary knowledge K C Exp.
e For each possible control state ¢ € State and set of knowledge K C Exp,
we have:
— aset Delete, x which may contain the name of any link / with delete €
threats$ (1),
— aset Insert, g which may contain any pair (I, E) where [ is the name
of a link with insert € threatsS (1), and E € K, and
— a set newState,. j, C State of states.

The machine is executed iteratively from a specified initial state control :=
control® with an initial adversary knowledge K := K% defined below, where
each iteration proceeds according to the following steps:

8 Recall from Sections 3.2.6 and 3.2.7 that nodes and subsystems may be nested
one in another.

9 Readers interested in constructing sophisticated tool support for UML themselves
can find the complete technical details in Sect. 7.5.
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(1) The contents of all link queues belonging to a link [ with read € threats$ (1)
are added to K.

(2) The content of any link queue belonging to a link I € Deletecontrorx is
mapped to 0.

(3) The content of any link queue belonging to a link [ is enlarged with all
expressions E where (I, E) € Insertcontrol i -

(4) The next control state is chosen non-deterministically from the set
newStatecontrol K -

The set KY of initial knowledge of an adversary of type A is defined to
be the algebra of expressions generated by the sets K% and K. Here, the
set K9 of accessible knowledge contains all data values v given in the UML
specification under consideration for which each node n containing v carries
a stereotype s, with access € Threats4(s,). In a given situation, the set K%
of previous knowledge can be used to give the adversary access to additional
data supposed to be known before start of the execution of the system, such
as public keys.

Note that an adversary A able to remove all values sent over the link [,
represented by delete; € threatsi(l), may not be able to selectively remove a
value e with known meaning from [. For example, the messages sent over the
Internet within a virtual private network are encrypted. Thus, an adversary
who is unable to break the encryption may be able to delete all messages
indiscriminately, but not a single message whose meaning would be known to
the adversary.

For each UML subsystem S and each adversary A, there exists a most
general adversary machine, also simply called the type A adversary machine. It
is the type A adversary machine with the maximal amount of non-determinism
in each of its states. Instead of reasoning with respect to all type A adversary
machines, it is sufficient to just consider the most general adversary machine,
which is often a simplification, and we will usually do this in the following.

To evaluate the security of the system with respect to the given type of
adversary, we then define the ezecution of the subsystem S in the presence of
an adversary of type A as the UML Machine [S] 4 by extending the definition
of [S] from Sect. 3.3.2 with a fourth step (4) as follows:

(1) A multi-set of input events is received.

(2) The events are distributed to the subcomponents.

(3) The output messages from the subcomponents are distributed.

(4) The most general type A adversary machine is applied to the link queues
as detailed above.

Thus after each iteration of the system execution, the adversary may non-
deterministically change the contents of link queues in a way depending on the
level of physical security described in the deployment diagram, as explained
in Sect. 4.1.
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A subsystem T is a black-box refinement in presence of an adversary of
type A of a subsystem S if every observable input/output behavior of an exe-
cution of 7 in the presence of an adversary of type A is also an input/output
behavior of an execution of S in the presence of an adversary of type A. T is
a delayed black-boz refinement in presence of an adversary of type A of Sif T
is a black-box refinement in presence of an adversary of type A of a subsystem
S, except that delays may be introduced in 7.

3.3.5 Important Security Properties

One possibility to specify security requirements is to, firstly, define an ide-
alized system model where the required security property evidently holds.
For example, all links and components may be guaranteed to be secure by the
physical layer specified in the deployment diagram. Secondly, one would prove
that the system model under consideration is behaviorally equivalent to the
idealized one, using a notion of behavioral equivalence of UML models. This
is explained in detail in Sect. 5.1.

In this subsection, we consider an alternative way of specifying the impor-
tant security properties of secrecy, integrity, authenticity, and freshness which
do not require one to explicitly construct such an idealized system and which
are used in the remaining parts of this book. We follow the standard approach
of [DY83] which defines security requirements in an intuitive way by incorpo-
rating the attacker model. We also explain how to define secure information
flow requirements.

Secrecy

The formalization of secrecy used in the following relies on the idea that a
system specification preserves the secrecy of a piece of data d if the system
never sends out any information from which d could be derived by the ad-
versary in interaction with the system. More precisely, d is leaked if there is
an adversary of a given adversary type that does not initially know d and an
input sequence to the system such that after the execution of the system given
the input in presence of the adversary, the adversary knows d, as defined in
Sect. 3.3.4. Otherwise, d is said to be kept secret.
Thus we come to the following definition.

Definition 3.1. We say that a UML subsystem S preserves the secrecy of an
expression E from adversaries of type A if E does not appear in the knowledge
set K of A during any execution of [S]a.

S preserves the secrecy of a variable v from adversaries of type A if for
every expression E which is a value of the variable v at any point, S preserves
the secrecy of E from adversaries of type A.
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Note that, by construction of the adversary knowledge in Sect. 3.3.4, this
definition takes into account the fact that the adversary may break up expres-
sions to access a secret subexpression.

This definition is especially convenient to verify if one can give an upper
bound for the set of knowledge K, which is often possible when the security-
relevant part of the specification of the system S is given as a sequence of
commands of the form await event e — check condition g — output event e’. For
example, this is the case when using UML sequence diagrams or statecharts
for the system behavior.

Note that this formalization of secrecy is relatively “coarse” in that it may
not prevent implicit information flow, but it is comparatively easy to verify
and seems to be sufficient in practice [Aba00]. Also, it fits well with our formal-
ization of cryptographic operations in Sect. 3.3.3: The encryption operations
are modeled as deterministic, given a fixed key and a fixed plaintext. Al-
though the basic algorithms for many cryptographic operations, such as RSA,
are in fact deterministic, they are usually randomized when implemented in
practice, for example by adding extra random data to the plaintext before
encrypting it, the so-called “salt” [GB99]. This is done to prevent a guessing
attack where an adversary simply encrypts all possible plaintexts with the
public encryption key and compares the result to the given ciphertext, which
is possible if the set of possible plaintexts is small. In our formalization of
cryptographic operations and adversary knowledge, we can abstract from this
randomization: Those values that are required to be secret are assumed not to
be contained in the adversary knowledge at the start of the system execution,
so the adversary cannot use them in the guessing attack mentioned above.
For values which are commonly known, but for which it should remain secret
whether they are contained in a given encrypted message, one can define a
new symbol in Data which represents this value in this message. For exam-
ple, the Boolean value true could be represented by PIN_correct in a particular
system context, if this is what true should signify there.

Ezamples

e The system that sends the expression {m}g :: K € Exp over an unpro-
tected Internet link does not preserve the secrecy of m or K against at-
tackers eavesdropping on the Internet, but the system that sends {m}x
and nothing else does, assuming that it preserves the secrecy of K against
attackers eavesdropping on the Internet.

e A system S that receives a key K encrypted with the public key of S
over a dedicated communication link and sends back {m}x over the link
does not preserve the secrecy of m against attackers eavesdropping on and
inserting messages on the link, but does so against attackers that cannot
insert messages on the link.
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Integrity

The property integrity can be formalized similarly: if during the execution of
the considered system, a system variable is assigned a value different from the
ones it is supposed to be, then the adversary must have caused this variable
to contain the value. In that sense the integrity of the variable is violated.
Thus we say that a system preserves the integrity of a variable if there is
no adversary such that at some point during the execution of the system in
presence of the adversary, the variable has a value different from the ones it
should have.

Definition 3.2. Given a set E C Exp of acceptable expressions, we say that
a subsystem S preserves the integrity of an attribute a with respect to E from
adversaries of type A with initial knowledge K° if during any execution of
[S]a, at any point the atiribute a is undefined or evaluates to an element
of E. If E = Exp \ K°, we simply say that S preserves the integrity of an
attribute a from adversaries of type A with initial knowledge K°.

Intuitively, this notion is “dual” to that of secrecy, in the sense that secrecy
prevents the flow of information from protected sources to untrusted recipi-
ents, while integrity prevents the flow of information in the other direction.
Again, it is a relatively simple definition, which may, however, not prevent
implicit flows of information. For systems or system parts where, at a given
point during the development, nothing is known about the values that a should
have, one can still use the above definition by setting £ = Exp\ K°, where K°
is the initial knowledge of the adversary. Then no adversary can make a take
on a value initially known to the adversary, which offers a certain degree of
protection, since in many situations, if the adversary can violate the integrity
of an attribute at all, he could in fact make it contain an arbitrary value.

Authenticity

To formalize message authenticity, we note that a message has its origin at a
system part if during any execution of the system, the message appears at first
at that part. To provide authenticity then means to secure the information
on the message origin.

Definition 3.3. Suppose we are given attributes a and o in a subsystem S,
where o is supposed to store the origin of the message stored in a. We say that
S provides (message) authenticity of the attribute a with respect to its origin
o from adversaries of type A with initial knowledge K° if during any execution
of [S]a, at any point the value of the attribute a appeared as a subexpression
first within the execution in outQu,, of all output queues and link queues in

S.
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Note that message authenticity is closely related to data integrity
[MvOV96, p. 359], [Gol03c]. For example, if messages are communicated via
a medium under control of an adversary, data integrity necessitates message
authenticity: If the adversary can remove a message from the communica-
tion medium and instead insert a different message successfully purporting
to originate with the sender of the earlier message, thus breaking data in-
tegrity, message authenticity is violated. Differently expressed, to establish
for message authenticity the origin of a specific message, it must actually be
the message message that originated at the sender, which is only guarantueed
where we have data integrity. Thus, message authenticity implies data in-
tegrity. If, however, the identity of the sender of a message is part of the
message, integrity of the message implies the possibility to authenticate the
sender. In this situation, data integrity implies message authenticity.

This observation can be made more precise.

Fact 3.4. Suppose we are given attributes a and o in a subsystem S, where o is
supposed to store the origin of the message stored in a. If S provides (message)
authenticity of the attribute a with respect to its origin o from adversaries of
type A with initial knowledge K°, and the origin o is not under control of the
adversary, then S preserves the integrity of a from adversaries of type A with
initial knowledge K°.

The proof of this fact is immediate from the definitions. Note that, as in the
statement of this fact, one may need an additional assumption regarding the
integrity of the origin o, if this is not a constant within S, because checking
authenticity with respect to an identity without verifying integrity of that
identity may provide little security.

Note also that the converse of the above fact does not hold since the
integrity of a message may be provided although the receipient does not know
its first origin. In a sense, integrity amounts to authencity with respect to a
non-specified part of the system under consideration.

For more discussions on the relation between message authenticity and
data integrity see [Gol03c]. Also, contrary to secrecy, integrity, and message
authenticity, the formalization of other kinds of authenticity (such as entity
authenticity) seems to be more application-dependent. We therefore do not
give a universal definition here, but refer for example to [Gol96, Gol03b] for
formalizations of different authenticity properties.

Freshness

Note that freshness of a value may mean the following two properties:'°

Unpredictability: An attacker cannot guess what its value was.
Newness: The value has never appeared before during the execution of the
system.

10 Following a written communication by Gavin Lowe.
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Both aspects can be considered with our approach: Unpredictability of data
is captured by considering a type A of adversary that does not include data
in its set of previous knowledge K%, defined in Sect. 3.3.4. Freshness in the
sense of newness requires an additional definition.

Definition 3.5. An atomic value data € Data U Keys in a subsystem S is
fresh within a subsystem instance or object D contained in S if the value data
appears in the specification S only in diagram parts specifying D, which are
called the scope of data in S.

By the restrictions in Definition 3.5, we only consider freshness of atomic
data d € DataUKeys, not of compound expressions or variables. Note that, as
mentioned in Sect. 3.3.3, different elements of Data U Keys are independent.
This is why it is sufficient to require of fresh values that they do not appear
in the specification outside their scope, as in the above definition.

This definition implies that a value data that is fresh within a subsystem
instance or object D in a subsystem & appears as a subexpression in the trace
of messages exchanged within S only after it has been sent out by D as a
message argument. See Sect. 7.5.5 for a formal argument supporting the last
two observations.

Secure Information Flow

We explain an alternative way of specifying secrecy- and integrity-like require-
ments, which gives protection also against partial flow of information, but can
be more difficult to deal with, especially when handling with encryption.

For this definition, one needs to assign to each piece of system data one of
two security levels: high, meaning highly sensitive or highly trusted, and low,
meaning less sensitive or less trusted, as explained in Sect. 3.1. The notion is
defined by referring to the sequences of input and output values received and
generated by the system, using the UML Machine [S] 4 defined in Sect. 3.3.4.

Given a set of messages H and a sequence m of event multi-sets, we write:

e m” for the sequence of event multi-sets derived from those in m by delet-
ing all events the message names of which are not in H, and

e my for the sequence of event multi-sets derived from those in m by delet-
ing all events the message names of which are in H.

Definition 3.6. Given a subsystem S and a set of high messages H, we say
that:

e A prevents down-flow with respect to H if for any two sequences i, j of event
multi-sets and any two output sequences o € [S]a(i) and p € [S]a(j),
ig = jg implies og = pg and

e A prevents up-flow with respect to H if for any two sequences i,j of event
multi-sets and any two output sequences o € [S]a(i) and p € [S]a(i),
i =i implies ol = pH.
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Intuitively, to prevent down-flow means that outputting a non-high (or
low) message does not depend on high inputs. This can be seen as a rather
stringent secrecy requirement for messages marked as high. Conversely, to
prevent up-flow means that outputting a high value does not depend on low
inputs. This can be seen as a stringent integrity requirement for messages
marked as high.

This notion of secure information flow is a generalization of the origi-
nal notion of non-interference for deterministic systems in [GM82] to system
models that are non-deterministic because of underspecification, see [Jiir02f]
for a more detailed discussion.
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Developing Secure Systems
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Model-based Security Engineering with UML

In this chapter, we present the extension UMLsec of UML which allows one
to express security-related information within the diagrams in a UML system
specification. The extension is given in form of a UML profile using the stan-
dard UML extension mechanisms. Stereotypes are used together with tags to
formulate security requirements and assumptions on the system environment;
constraints give criteria that determine whether the requirements are met by
the system design, by referring to the execution semantics. These constraints
can be checked automatically using the tool support presented in Chap. 6.

We list requirements on a UML extension for secure systems development
and discuss how far our extension meets these requirements. The details of the
extension are explained by means of examples. We demonstrate the usefulness
of the extension for enforcing established rules of secure systems design and
indicate with an example how one could use UMLsec in order to apply security
patterns.

4.1 UMLsec Profile

For UMLsec, we give validation rules that evaluate a model with respect to
listed security requirements, which were introduced in Sect. 3.1. Many security
requirements are formulated regarding the behavior of a system in interaction
with its environment, in particular, with potential adversaries. To verify these
requirements, we use the execution semantics defined in Sect. 3.3.

4.1.1 Requirements on a UML Extension for Development of
Security-Critical Systems

We formulate what we consider the necessary properties of an UML extension
for secure systems development. Following the format of the OMG Requests
for Proposals (RFPs) we distinguish mandatory and optional requirements.
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Mandatory Requirements

The following are the main mandatory requirements:

Security requirements: One needs to be able to formulate basic security
requirements such as secrecy, integrity, and authenticity of data in a
precise way.

Threat scenarios: It should be possible to consider various situations that
give rise to different possibilities of attacks.

Security concepts: One should be able to employ important security con-
cepts, such as tamper-resistant hardware.

Security mechanisms: One needs to be able to incorporate security mech-
anisms such as access control and security protocols.

Security primitives: On a more fine-grained level, one needs to model se-
curity primitives such as symmetric and asymmetric encryption.

Underlying physical security: It is necessary to take into account the level
of security provided by the underlying physical layer.

Security management: Security management questions, such as secure
workflow, need to be addressed.

Optional Requirements

It would be very useful to include domain-specific security knowledge, for
example, on Java, smart cards, CORBA, etc..

Note that the goal of the extension is not to aim for completeness by in-
cluding all kinds of security properties as primitives. Instead, we focus on those
that have a comparatively intuitive and universally applicable formalization,
such as secrecy, integrity, and message authentication. Other properties, such
as entity authenticity, have meanings that depend more on the context of their
specific use. The idea is that these could be added by more sophisticated users
on-the-fly.

4.1.2 The Extension

We give the profile following the structure in [UMLO3]:

Applicable Subset: The profile concerns all of UML.

Stereotypes, Tagged Values, and Constraints: In Fig. 4.1 we give the list of
stereotypes from UMLsec, together with their tags and constraints, fol-
lowing the notation used in [UMLO03, p. 3-59]. The stereotypes do not have
parents. Fig. 4.2 gives the corresponding tags, which are all DataTags.
Although the concepts discussed here apply both to the type and the
instance level, for simplicity we stay on the instance level in the follow-
ing. In particular by “subsystem” we mean, more precisely, “subsystem
instance”.

Prerequisite Profiles: UMLsec requires no prerequisite profiles.
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Tag Stereotype Type Multip. | Description
start fair exchange | state * start states
stop fair exchange | state * stop states
adversary fair exchange | adversary model 1 adversary type
action provable state * provable action
cert provable expression * certificate
adversary provable adversary model * adversary type
protected rbac state * protected resources
role rbac (actor, role) * assign role to actor
right rbac (role, right) * assign right to role
secrecy critical data * secrecy of data
integrity critical (variable, * integrity of data
expression)
authenticity | critical (data, origin) * authenticity of data
high critical message * high-level message
fresh critical data * fresh data
adversary secure links adversary model 1 adversary type
adversary data security | adversary model 1 adversary type
integrity data security | (variable, * integrity of data
expression)
authenticity | data security | (data, origin) * authenticity of data
guard guarded object name 1 guard object

Fig. 4.2. UMLsec tags

Well-formedness Rules

We explain the stereotypes and tags given in Figures 4.1 and 4.2. The con-
straints use the security-aware interpretation of UML diagrams, defined in
Sect. 3.3. Some of them, such as «fair exchange», « provable», «secure links»,
and « data security », are parameterized over the adversary type with respect
to which the security requirements should hold. These stereotypes have an
associated {adversary} tag, which may have values of the form (7,C). T is
the adversary type, such as T' = default for the adversary defined in Fig. 4.6,
which may also be self-defined. C is a logical condition on the previous knowl-
edge K% of the adversary as defined in Sect. 3.3.4. If the type is omitted, this
is interpreted as the adversary type T = default. If the condition is omitted,
we assume the condition C' that ensures that data included in the {secrecy}
tag of the «critical » stereotype defined below does not appear as subexpres-
sions in K%. For the tag multiplicities in Fig. 4.2, a * represents an arbitrary
multiplicity of the tag in a given diagram.

The constraints associated with the stereotypes give a range from struc-
tural syntactic conditions, such as « secure links», to relatively deep semantic
conditions, such as « no down-flow ». This has the advantage that in an analy-
sis of a system one may start out with the simpler structural conditions, and
remove violations against them, before constructing and analyzing the behav-
ioral part of the specification, for which automated mechanical verification is
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also available, as presented in Chap. 6. This approach seems to be more effi-
cient than trying to establish the overall security all at once. In an industrial
setting, it also allows a scaling of the necessary costs.

We give short examples for usage of the stereotypes. To keep the presenta-
tion concise, we sometimes give only those fragments of subsystems that are
essential to the stereotype in question. Also, we omit proving the stated prop-
erties formally, since the examples are just for illustration. More substantial
case-studies for performing security analyses with UMLsec can be found in
Chap. 5.

fair exchange (for use case diagrams)

Intuitively, this stereotype represents the security requirement that any trans-
action should be performed in a way that prevents both parties from cheating.
When applied to a subsystem containing a use case diagram, it requires that
this subsystem can be refined by another subsystem only if that is also stereo-
typed «fair exchange ». Note that this usage of the « fair exchange» stereotype
has only an informal meaning, as opposed to the stereotypes below. In par-
ticular, “refinement” is meant here in an informal sense. It just serves as an
example how the security requirements included as stereotypes in the other
kinds of diagrams below can also conveniently be included in use case dia-
grams.

Ezample The use case diagram in Fig. 4.3 describes the following situation:
a customer buys a good from a shop in a way that is supposed to en-
sure «fair exchange». The diagram can be refined to the activity diagram
in Fig. 4.4, because the latter is also stereotyped « fair exchange». For ac-
tivity diagrams, the stereotype has a more specific constraint associated, as
explained below.

«fair exchange»

Sales application

buys good
sells good

Customer Business

Fig. 4.3. Use case diagram for business application

fair exchange (for activity diagrams)

This stereotype, when applied to subsystems containing an activity diagram,
has associated tags {start}, {stop}, and {adversary}. The tags {start} and
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{stop} take pairs (good, state) as values, where good is the name of a good
to be sold and state is the name of a state. If there is only one good to be
sold in a given system specification, the value good can be omitted. The tag
{adversary} specifies an adversary type relative to which the security require-
ment should hold. The associated constraint requires that, for every good to
be sold, whenever a {start} state in the contained activity diagram is reached,
then eventually a {stop} state will be reached, when the system is executed in
presence of an adversary of the type A specified in the tag {adversary}. This
is formalized for a given subsystem S as follows. S fulfills the constraint of
« fair exchange» with respect to an adversary type A if for every good to be
sold the following condition holds: For every execution e of [S]a there exists
a number n € N such that for every sequence I,..., I, of input multi-sets
there exists an execution e’ which is an extension of e and then processes the
inputs in I,...,I,, such that there are at least as many {stop} states in e’
as there are {start} states in e, with respect to the relevant good.

Note that this requirement cannot be ensured for systems which an at-
tacker can stop completely.

Ezample Figure 4.4 gives a subsystem instance describing the following sit-
uation: a customer buys a good from a business. Here the adversary type is
omitted because it is not relevant, since no communication structure is spec-
ified. The semantics of the stereotype «fair exchange» is, intuitively, that the
actions listed in the tags {start} and {stop} should be linked in the sense that
if one of the former is executed then eventually one of the latter will be.

Purchase «fair exchange» !_L\
{start={Pay}} {stop={Reclaim,Pick up}}

Customer Business

Request good

Wait until
delivery due

undelivered : delivered

o)
Reclaim /4

Fig. 4.4. Purchase activity diagram
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This would entail that, once the customer has paid, either the order is
delivered to the customer by the due date, or the customer is able to reclaim
the payment on that date. To avoid illegitimate repayment claims, one could
employ the stereotype « provable» with regard to the state Pay, in order to
make sure that the Reclaim payment action checks whether the Customer can
provide proof of payment.

provable

A subsystem S may be labeled «provable» with associated tags {action},
{cert}, and {adversary}. The tag {cert} contains an expression which serves
as proof that the action at the state given in the tag {action} was performed.
The tag {adversary} specifies an adversary type relative to which the secu-
rity requirement should hold. The stereotype « provable» then specifies that
S may output the expression E € Exp given in {cert} only after the state
with name in {action} is reached, when executed in presence of an adversary
of the type A that is specified in the tag {adversary}. Here the certificate in
{cert} is assumed to be unique for each subsystem instance. More formally,
S fulfills the constraint if the following holds for the adversary type A: For
every execution e of [S]a4, if the expression in {cert} is given as output at a
state S in e, the state specified by {action} appears as a current state before
S in e.

rbac

This stereotype of subsystems containing an activity diagram enforces role-
based access control in the business process specified in the activity diagram.
It has associated tags {protected}, {role}, and {right}. The tag {protected}
has as its values the states in the activity diagram the access to whose activ-
ities should be controled. The {role} tag may have as its value a list of pairs
(actor, role) where actor is an actor in the activity diagram, and role is a role.
The tag {right} has as its value a list of pairs (role, right) where role is a role
and right represents the right to access a protected resource. The associated
constraint requires that the actors in the activity diagram only perform ac-
tivities for which they have the appropriate rights. For a subsystem S, this
is formalized as follows: For every actor A in S and every activity a in the
swim-lane of A in the activity diagram in S, there exists a role R such that
(A, R) is a value of {role} and (R, a) is a value of {right}.

Ezample Figure 4.5 gives a subsystem instance for an example of the use of
role-based access control. It describes a simplified part of a business process
where a credit is being set up for a customer of a bank. Usually, there are bank
employees who have the right to set up credits. In the case of large credits,
their supervisors have to authorize the credit before the money is transferred.
For the sake of the example, we assume that the threshold is at 10,000 of
the given currency. In the example given, the protected resource is thus the



56 4 Model-based Security Engineering with UML

authorize credit activity, to which the supervisor in her role of credit approver
has the appropriate permission, so the diagram is correctly labeled «rbac»
because the associated constraint is respected.

Incidentally, this example is an instance of the security principle of sep-
aration of privilege explained in Sect. 4.2. Note that one also needs to make
sure that a given employee is not assigned two roles with associated privileges
that are supposed to be separated, for example as a vacation substitute, as
explained in Sect. 6.3. How to link access control to the level of the technical
security architecture is demonstrated using the stereotype « guarded access»
introduced below.

Granting a credit «rbac»t
{role=(supervisor, credit approver)}
{right=(credit approver, authorize credit)}
{protected="authorize credit"}

Employee Supervisor

obtain
customer
details

Set up "\ (credit>10.000]
credit

therwi authorize
[otherwise] credit

Fig. 4.5. Role-based access control example

Internet, encrypted, LAN, wire, smart card, POS device, issuer node

These stereotypes on links (resp. nodes) in deployment diagrams denote the
respective kinds of communication links (resp. system nodes). We require that
each link or node carries at most one of these stereotypes. For each adversary
type A, we have a function Threats4(s) from each stereotype

s € {«wiren, «encrypted », « LAN », « smart card »,

« POS device», «issuer node», « Internet » }

to a set of strings Threats4(s) C {delete, read, insert, access} under the follow-
ing conditions:
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e for a node stereotype s, we have Threats4(s) C {access}, and
e for a link stereotype s, we have Threats4(s) C {delete, read, insert}.

Thus Threatss(s) specifies which kinds of actions an adversary of type
A can apply to nodes or links stereotyped s. The meanings of the ac-
tions are explained in Sect. 3.3.4. Given a UML subsystem S, the function
Threats(s) gives rise to a function threats?(z) that takes a node or link
z and a type of adversary A and returns a set of strings threats4 (z) C
{delete, read, insert, access}, as defined in Sect. 3.3.4. This way we can evaluate
UML subsystems using their execution semantics in Sect. 3.3.2, by referring to
the security framework using UML Machine Systems in Sect. 3.3.4. We make
use of this for the constraints of the remaining stereotypes of the profile.

Examples for threat sets associated with some common adversary types
are given in Figures 4.6 and 4.7.

Figure 4.6 gives the default attacker, which represents an outsider adver-
sary with modest capability. This kind of attacker is able to read, delete, and
insert messages on an Internet link. On an encrypted Internet link, such as a
virtual private network, the attacker might still be able to delete messages,
without knowing their encrypted content, by bringing down a network server.
However, an average adversary would not be able to read the plaintext mes-
sages or insert messages encrypted with the right key. Of course, this assumes
that the encryption is set up in a way such that the adversary does not get
hold of the secret key. The default attacker is assumed not to have direct
access to the local area network (LAN) and therefore not to be able to eaves-
drop on those connections,’ nor on wires connecting security-critical devices
(for example, a smart card reader and a display in a point-of-sales (POS)
device, as in the case-study in Sect. 5.3). Also, smart cards are assumed to be
tamper-resistant against default attackers, although they may not be against
more sophisticated attackers [AK96]. Also, the default attacker is assumed
not to be able to access POS devices or card issuer systems.

Stereotype |Threatsgefau ()
Internet {delete, read, insert}
encrypted |{delete}

LAN 0
wire

0
smart card |0}
0
0

POS device
issuer node

Fig. 4.6. Threats from the default attacker

! With more sophistication, even an external adversary may be able to access local
connections, but this is assumed to be beyond “default” capabilities.
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Stereotype |Threats;nsider ()

Internet {delete, read, insert}
encrypted |{delete, read, insert}
LAN {delete, read, insert}
wire {delete, read, insert}
smart card |{)
POS device|)
issuer node |{access}

Fig. 4.7. Threats from the insider attacker card issuer

Figure 4.7 defines the insider attacker, in the context of the electronic
purse system considered in Sect. 5.3. As an insider, the attacker may access
the encrypted Internet link, knowing the corresponding key, and the local
system components.

secrecy, integrity, high

These stereotypes, which may label dependencies in static structure or compo-
nent diagrams, denote dependencies that are supposed to provide the respec-
tive security requirement for the data that is sent along them as arguments
or return values of operations or signals. These stereotypes are used in the
constraint for the stereotype «secure links».

critical

This stereotype labels objects or subsystem instances containing data that is
critical in some way, which is specified in more detail using the corresponding
tags. These tags are {secrecy}, {integrity}, {authenticity}, {fresh}, and {high},
representing the corresponding security requirements which were introduced
in Sections 3.1 and 3.3. The values of the tag {secrecy} are the names of
expressions, attributes or message argument variables of the current object
the secrecy of which is supposed to be protected. One may also give the name
of an operation to require that its arguments and return values should be kept
secret. The {integrity} tag has as values pairs (v, E) where v is a variable of
the object whose integrity should be protected and E is the set of acceptable
expressions that may be assigned to v. The values of the tag {authenticity} are
pairs (a,0) of attributes of the « critical » object or subsystem where a stores
the data whose authenticity should be provided and o stores the origin of that
data. The tag {fresh} has as its values atomic data (that is, elements of the set
DataUKeys) that should be freshly generated. These constraints are enforced
by the constraint of the stereotype «data security » which labels subsystems
that contain « critical » objects, as explained below. The tag {high} has as its
values the names of messages that are supposed to be protected with respect
to secure information flow, as enforced by the stereotypes « no down-flow »



4.1 UMLsec Profile 59

and «no up-flow». For synchronous operations, the return messages are also
required to be protected.

The following stereotypes « secure links », « secure dependencies», and « data
security », together with the associated stereotypes «secrecy», «integrity»,
«high», and «critical » introduced above, describe different conditions for en-
suring secure data communication: « secure links» ensures that the security
requirements on the communication dependencies between components are
supported by the physical situation, relative to the adversary model under
consideration. The stereotype «secure dependencies» ensures that the secu-
rity requirements in different parts of a static structure diagram are consis-
tent. Finally, « data security » ensures that security is enforced on the behav-
ior level. One could for example merge the conditions of «secure links» and
« secure dependencies» to give one stereotype. We keep them separate to sup-
port the design process suggested above, where one would like to establish
security properties as early during the design as possible, before continuing
with the next design step.

secure links

This stereotype, which may label subsystems, is used to ensure that se-
curity requirements on the communication are met by the physical layer,
given the adversary type A that is specified in the tag {adversary} associ-
ated with this stereotype. More precisely, when attached to a UML subsys-
tem S, the constraint enforces that for each dependency d with stereotype
s € {«secrecy», «integrity », « high»} between subsystems or objects on dif-
ferent nodes n, m, we have a communication link ! between n and m such
that:

e in the case of s = « high», we have threats’, (1) = 0,
e in the case of s = «secrecy», we have read ¢ threats$, (1), and
e in the case of s = «integrity», we have insert ¢ threats (l).

Ezample We give an example concerning communication link security in
Fig. 4.8. Given the default adversary type as defined in Fig. 4.6, the con-
straint for the stereotype «secure links» is violated. The model does not pro-
vide communication secrecy against the default adversary, because the Inter-
net communication link between web server and client does not provide the
needed security level according to the Threatsgefauit(Internet) scenario. Intu-
itively, the reason is that Internet connections do not provide secrecy against,
default adversaries. Technically, the constraint is violated because the depen-
dency carries the stereotype «secrecy», but for the stereotype «Internet» of
the corresponding link we have read € Threatsgefaui (Internet).

secure dependency

This stereotype, used to label subsystems containing static structure dia-
grams, ensures that the «call» and «send» dependencies between objects
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«secure links»

remote access
——————— {adversary=default}

client machine | «secrecy» | server machine
get_password B B

client apps «call» °F

browser
i «Internet»

Fig. 4.8. Example secure links usage

web server

access control

or subsystems respect the security requirements on the data that may be
communicated across them, as given by the tags {secrecy}, {integrity}, and
{high} of the stereotype « critical ». More exactly, the constraint enforced by
this stereotype is that if there is a « call» or «send» dependency from an ob-
ject or subsystem C' to an interface I of an object or subsystem D then the
following conditions are fulfilled:

e For any message name n in I, n appears in the tag {secrecy} (resp.
{integrity} resp. {high}) in C if and only if it does so in D.

e If a message name in I appears in the tag {secrecy} (resp. {integrity}
resp. {high}) in C then the dependency is stereotyped «secrecy» (resp.
«integrity » resp. « high»).

If the dependency goes directly to another object or subsystem without in-
volving an interface, the same requirement applies to the trivial interface
containing all messages of the server object.

Ezample Figure 4.9 shows a key generation subsystem instance with the
requirement « secure dependency». The given specification violates the con-
straint for this stereotype, since Random generator and the «call» depen-
dency do not provide the security level for the message random required by
Key generator. More precisely, the constraint is violated: The message random
is required to be of high level by Key generator by the tag {high} in Key gen-
erator, but it is not guaranteed to be high level by Random generator. In
fact, there are no high messages in Random generator and so the tag {high}
is missing.

data security

This stereotype labeling subsystems has the following constraint. The behav-
ior of any subsystem S stereotyped « data security » respects the data security
requirements given by the stereotypes « critical » and the associated tags con-
tained in the subsystem, with respect to the threat scenario arising from the
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«secure dependency»
Key generation P Y FL\

newkey(): Key «interface»
Random number

random(): Real
Random generator _ Key generator «critical»
N {high={random()}}

seed: Real S
«call» S

random(): Real newkey(): Key

Fig. 4.9. Key generation subsystem instance

deployment diagram and given the adversary type A that is specified in the
tag {adversary} associated with this stereotype.

More precisely, the constraint is given by the following four conditions,
which use the concepts of secrecy, integrity, authenticity, and freshness defined
in Sect. 3.3:

secrecy: The subsystem preserves the secrecy of the data designated by the
tag {secrecy} against adversaries of type A.

integrity: Given a tag {integrity} of «critical » with a value (v, E), the subsys-
tem preserves the integrity of the variable v against adversaries of type A,
with respect to the sets E of admissible expressions. If the second com-
ponent E is omitted in the tag {integrity}, the integrity of v should be
preserved with respect to the set of expressions that can be constructed
from those appearing in the specification of the subsystem S. This means
that the adversary should not be able to make the variable v take on a
value previously known only to him.

authenticity: For any value (a,0) of the tag {authenticity}, the subsystem
provides the authenticity of the attribute a with respect to its origin o
against adversaries of type A.

freshness: Within the subsystem S stereotyped «data security», any value
data € Data U Keys which is tagged {fresh} in the relevant subsystem
instance or object D stereotyped « critical » in S should be fresh in D.

In each case, the initial knowledge of the adversary defined in Sect. 3.3.4 is
assumed not to contain the data values that according to the tags of the
stereotype «critical » should be guaranteed secrecy, integrity or authenticity:
These requirements cannot be achieved if the adversary already knows this
data initially. Further assumptions on the initial adversary knowledge can be
specified. In case the admissible expressions or the intended origin of data in
the {integrity} and {authenticity} tags refer to expressions not locally known
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at the «critical » object where these tags are applied, one can also associate
these tages with the relevant « data security » stereotype.

Note that it is enough for data to be listed with a security requirement in
one of the objects or subsystems contained in the subsystem to be required
to fulfill the above conditions. Note also that several nested subsystems may
each carry the stereotype «data security », such that the above conditions are
required to hold with respect to each of them. This is important to note when
including one subsystem in another.

Ezample The example in Fig. 4.10 shows the specification of a variant of the
Internet security protocol TLS? proposed in [APS99]. The goal of the pro-
tocol is to establish a secure channel over an untrusted communication link
between a client and a server. This channel is supposed to provide secrecy
and server authenticity, as specified by the {secrecy} and {authenticity} tags.
To achieve this goal, some of the local attributes have to satisfy {integrity} as
well, here in the sense that the adversary should not be able to make these
attributes take on a value in his previous knowledge. The protocol proceeds
as follows: The client initiates the protocol by sending a self-signed certificate
to the server. The sender returns the encrypted session key together with the
certificate S’igan—Al(S :: Ks) certifying authenticity of the server public key.
The client finally sends the secret encrypted under the session key. As defined
in Sect. 3.3.3, {M }k is the encryption of the message M with the key K,
Signg (M) is the signature of the message M with K, and :: denotes con-
catenation. Also, Deck (C) is the decryption of the ciphertext C using K and
Erti (S) is the extraction of the data from the signature using K. We recall
that for each method msg in the diagram and each number n, msg,, represents
the nth argument of the operation call msg that was most recently accepted
according to the sequence diagram. Also, we use the notation S_ to represent
all values S,, for each z, when specifying data types or security tags, and
similarly for s_, N_ etc..

One can now analyze the specification with respect to the default adversary
type using the UMLsec tool support introduced in Chap. 6. In this example,
the default adversary has access to the Internet link between the two nodes
only. It then turns out that the specification violates the constraint of its
stereotype « data security » that the values s; are kept secret. More details on
the security analysis and how to fix the protocol are given in Sect. 5.2.

Note that in our approach, the properties of secrecy, integrity, and au-
thenticity are taken relative to the considered type of adversary. In case of
the default adversary, this is a principal external to the system; one may, how-
ever, consider adversaries that are part of the system under consideration, by
giving the adversary access to the relevant system components. This can be
done by defining Threats4(s) to contain access for the relevant stereotype s.
For example, in an e-commerce protocol involving customer, merchant, and

2 TLS (Transport Layer Security) is the current version of the Internet security
protocol SSL (Secure Sockets Layer).
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Fig. 4.10. TLS protocol variant
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bank, one might want to say that the identity of the goods being purchased
is a secret known only to the customer and merchant, and not the bank. This
can be formulated by marking the relevant data as “secret” and by performing
a security analysis relative to the adversary model “bank”. That means that
the adversary is given access to the bank component by defining the Threats()
function in a suitable way.

Also note that the adversary does not necessarily have access to the in-
put queue of the system. Thus it may be sensible, for example, to apply the
{secrecy} tag to a value received by the system from the outside. Of course,
the condition associated with the « data security » stereotype only ensures that
the component marked with this stereotype keeps the values received by the
environment secret. Additionally, one has to make sure that the environment
of the system part under consideration does not make these values available
to the adversary either.

no down-flow, no up-flow

These stereotypes of subsystems prevents the indirect leakage or corruption
of sensitive data: It enforces secure information flow by making use of the
tag {high} associated with the stereotype « critical ». More precisely, the con-
straint for «no down-flow» (resp. «no up-flow») is that the UML machine
Exec [S] for the subsystem S prevents down-flow (resp. up-flow) with respect
to the messages specified in {high} and their return messages, as defined in
Sect. 3.3.5.

Ezample The example in Fig. 4.11 shows the web-based customer account
data object from the introductory example in Chap. 2. It allows its secret
money attribute to be read using the operation rm(), whose return value is
also secret, and written using wm(x). If the money attribute is over 1,000, the
object is in a state ExtraService, otherwise in NoExtraService. The state of the
object can be queried using the operation rx(). The data object is supposed
to be prevented from indirectly leaking out any partial information about
high data via non-high data, as specified by the stereotype « no down-flow ».
For example for privacy reasons, it may be important that the observable
information on the customer account allows no conclusion about the money
spent so far. The given specification violates the constraint associated with
«no down-flow», since partial information about the input of the high op-
eration wm() is leaked out via the return value of the non-high operation
rx(). To see how the underlying formalism captures the security flaw using
Definition 3.6, it is sufficient to exhibit sequences i, j of input multi-sets and
sequences o € [A](i) and p € [A](j) of output multi-sets of the UML Machine
A giving the behavior of the considered statechart, such that iy = jg and
of # pH, where H is the set of high messages. Consider the sequences

o i% (fwm(0)},{rz()}) and
o i (fwm(0000)} . frz()}).
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Fig. 4.11. Customer account data object

We have ig = ({ },{rz() } ) = ju. From the definition of the behavioral
semantics of statecharts in Sect. 3.3.2, we can see that we have the following
output multi-sets:

o o ({},{return(false) } ) € [A](2) and
o pE({}. freturn(true) }) € [A]G).

But this implies

o = ({ }, {return(false) } ) # ({ } , {return(true) } ) = pu,

meaning that the constraint associated with « no down-flow » is violated. Thus
the model carries the stereotype illegitimately. Again this can be detected
automatically with the tool support provided for UMLsec [JSA104].

guarded access

This stereotype of subsystems is supposed to mean that each object in the
subsystem that is stereotyped « guarded» can only be accessed through the
objects specified by the tag {guard} attached to the «guarded» object. An
example for this situation is the Java 2 security architecture, as explained in
Sect. 5.4. Formally, we assume that we have name ¢ K%, for the adversary type
A under consideration and each name name of an instance of a « guarded»
object, meaning that a reference is not publicly available. Also, we assume
that for each « guarded » object there is a statechart specification of an object
whose name is given in the associated tag {guard}. This way, we model the
passing of references. See Sect. 5.4 for more details.

Ezample We illustrate this stereotype with the example of a web-based fi-
nancial application. Two institutions offer services over the Internet to local
users: an Internet bank, Bankeasy, and a financial advisor, Finance. To make
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use of these services, a local client needs to grant the applets from the respec-
tive sites certain privileges. Access to the local financial data is realized using
GuardedObjects. The specification of the local system part is given in Fig. 4.12.
It contains the simplified relevant part of the Java Security Architecture which
receives requests for object references and forwards them to the guard objects
of the three guarded objects. Since the « guarded» objects StoFi, FinEx, and
MicSi can only be accessed through their associated guard, the subsystem in-
stance fulfills the condition associated with the stereotype « guarded access»
with regard to default adversaries. The access controls are realized by the
Guard objects FinGd, ExpGd, and MicGd, whose behavior is specified. For ex-
ample, applets that are signed by the bank can read and write the financial
data stored in the local database, but only between 1 pm and 2 pm. This
which is enforced by the FinGd guard object, where we assume that the con-
dition slot is fulfilled if and only if the time is between 1 pm and 2 pm. More
details on this example are given in Sect. 5.4.

guarded

This stereotype labels objects in the scope of the stereotype « guarded access»
above that are supposed to be guarded, as explained in more detail in Sect. 5.4.
It has a tagged value {guard} which defines the name of the corresponding
guard object. As an example, in Fig. 4.12, the « guarded » objects StoFi, FinEx,
and MicSi are protected by the {guard} objects Guard objects FinGd, ExpGd,
and MicGd, respectively.

4.1.3 Addressing the Requirements

We go back to the requirements on an extension of UML for the development
of security-critical systems in Sect. 4.1.1 and consider UMLsec in turn with
respect to them.

Mandatory Requirements

Security requirements: Formalizations of basic security requirements are pro-
vided via stereotypes, such as «secrecy », «integrity », and « authenticity ».

Threat scenarios: Threat scenarios are incorporated using the formal seman-
tics and depending on the modeled underlying physical layer via the sets
Threats, g4, (ster) of actions available to the adversary of kind adv.

Security concepts: We have shown how to incorporate security concepts such
as tamper-resistant hardware using threat scenarios.

Security mechanisms: As an example, in Sect. 5.4 we demonstrate modeling
of the Java Security Architecture access control mechanisms.

Security primitives: Security primitives are either built in, such as encryption,
or can be treated, such as security protocols.

Underlying physical security: This can be addressed as demonstrated by the
stereotype « secure link» in deployment diagrams.
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Fig. 4.12. Financial application specification: Local system

Security management: This can be considered in our approach by using ac-
tivity diagrams, as in Fig. 4.4.
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Optional Requirements

Additional domain knowledge has been incorporated regarding Java security
(explained in Sect. 5.4) and CORBA applications, as well as smart card se-
curity (see Sect. 5.3).

Note that when adapting a modeling language to security requirements,
one needs to make sure that the features used to express security properties
on the design level actually map to system constructs on the implementation
level which do provide these properties. Since we assume, for example, that
attributes can only be accessed through the operations of an object, and
that only the explicitly externally offered operations of a subsystem can be
called from outside it, it is generally security critical that this is enforced
on the implementation level. We refrain from using UML features such as
package visibility to model security functionality because it does not seem to
be generally implemented in a security-aware way.

Defining a process for software development using UMLsec is beyond the
scope of this book. Related material can be found in [Jir02j, JPW03, HJ03b,
PJWBO03, BBHT03]. We only mention that with our approach, one can man-
age interactions potentially conflicting security requirements in a systematic
way. The security requirements are systematically integrated into the design.
In particular, one may employ the goal tree approach to non-functional re-
quirements [Chu93] in the context of our approach. Specifically, in [Jiir02j]
we propose to combine a use-case-driven approach as in [JBR9S8] for the func-
tional requirements with a goal-driven approach as in [Chu93] for the security
requirements.

4.2 Design Principles for Secure Systems

We explain how one could use our approach to enforce the security design
rules stated in [SS75].

FEconomy of Mechanism

Our approach addresses this “meta-property” by providing developers, who
may have litte background knowledge in security, with guidance on the em-
ployment of security mechanisms who might otherwise be tempted to employ
more complicated mechanisms since these may seem more secure.

Fail-safe Defaults

One may verify that a system is fail-safe by showing that certain security-
relevant invariants are maintained throughout the execution of the system.
In particular, they should hold if the execution is interrupted at some point,
possibly due to malicious intent of one of the parties involved. As an example,
secure log-keeping for audit control is considered with respect to the unlinked
load transaction of the smart-card-based Common Electronic Purse Specifi-
cations (CEPS) [CEPO01] in Sect. 5.3.2.
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Complete Mediation

This principle concerns a strategy for access control where every access is
checked. As an example, we show in Sect. 5.4 how to use UMLsec to correctly
develop secure Java applications making use of the Java Security Architecture
access control mechanisms. With this approach, one can also enforce complete
mediation.

More feasibly, one can specify a set of sensitive objects and say that a
specification satisfies mediation with respect to these objects if their access
is controlled. One may then give a general policy that defines which access
restrictions should be enforced.

Open Design

Our approach aims to contribute to the development of a system whose secu-
rity does not rely on the secrecy of its design.

Separation of Privilege

Separation of privilege gives another strategy for granting access to resources.
Again, this can be enforced similarly to the way explained in Sect. 5.4. For ex-
ample, one can define guard objects that require signatures from two different
principals on the applet requesting access to the guarded object.

In this context, a specification satisfies separation of privilege with respect
to a certain privilege p if there are two or more principals whose signature is
required to be granted p, at every point of the execution.

More generally, one can formulate such requirements on a more abstract
level and verify UMLsec specifications with respect to these requirements.

Least Privilege

Given functionality requirements on a system, a system specification satisfies
the principle of least privilege if it satisfies these requirements and if every
proper diminishing of privileges of the entities in the system leads to a system
that does not satisfy the requirements. This has been implemented in the
UMLsec tool [JSAT04]. Tt also includes algorithms that, given functionality
requirements, construct the corresponding least privileges for a system.

Least Common Mechanism

Since we follow an object-oriented approach, this principle is automatically
enforced in so far as data is encapsulated in objects and the sharing of data
between different parts of a system is thus well-defined and can be kept at the
minimum of what is necessary.
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Psychological Acceptability

With respect to the development process, this principle is addressed by our
approach in so far as it aims for ease of use in the development of security-
critical systems, and thus for the psychological acceptability of security issues
on the side of the developers.

4.3 Applying Security Patterns

There are several conceptual aids for secure systems development using
UMLsec. For example, in Chap. 8, we explain how to use tool supported tech-
niques such as refinement and modularity. In this section, we shortly sketch
how one could use security patterns in the context of UMLsec.

Patterns [GHJV95] encapsulate the design knowledge of software engineers
by presenting recurring design problems and standardized solutions. One can
use transformations of UMLsec models to introduce patterns within the design
process. A goal of this approach is to ensure that the patterns are introduced
in a way that has previously been shown to be useful and correct. Also, having
a sound way of introducing patterns using transformations can ease security
analysis, since the analysis can be performed on the more abstract and sim-
pler level, and one can derive security properties of the more concrete level,
provided that the transformation has been shown to preserve the relevant
security properties.

In our approach, the application of a pattern p corresponds to a function f,
which takes a UML specification S and returns a UML specification, namely
the one obtained when applying p to S. Technically, such a function can be
presented by defining how it should act on certain subsystem instances, and
by extending it to all possible UML specifications in a compositional way.
Suppose that we have a set S of subsystem instances such that none of the
subsystem instances in S is contained in any other subsystem instance in S.
Suppose that for every subsystem instance S € S we are given a subsystem
instance f,(S). Then for any UML specification U, we can define f,(U) by
substituting each occurrence of a subsystem instance S € S in U by f,(S).The
challenge then is to define such a function f, that is applicable as widely as
possible. How to do this on a technical level is beyond the scope of this first
introduction to UMLsec. Here we just demonstrate the idea by an example.

Consider the problem of communication over untrusted networks, as ex-
emplified in Fig. 4.13. A well-known solution to this problem is to encrypt the
traffic over the untrusted link using a key exchange protocol, as demonstrated
in Fig. 4.14. A detailed explanation of this pattern is given in Sect. 5.1. The
Secure Channel Pattern could thus be formulated intuitively as follows: In a
situation such as the one in Fig. 4.13, one can implement the secure channel
needed to enforce the security requirements using the system in Fig. 4.14.
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Fig. 4.13. Security pattern example: sender and receiver

To apply this pattern p in a formal way, we consider the set .S of subsys-
tems derived from the subsystem in Fig. 4.13 by renaming: This means, we
substitute any message, data, state, subsystem instance, node, or component
name n by a name m at each occurrence, in a way such that name clashes
are avoided. Then f, maps any subsystem instance S € .S to the subsystem
instance derived from that given in Fig. 4.14 by the same renaming. This
gives us a presentation of f, from which the definition of f, on any UML
specification can be derived as indicated above. Since one can show that the
subsystem in Fig. 4.14 is secure in a precise sense, as explained in Sect. 5.1,
this gives one a convenient way of reusing security engineering knowledge in
a well-defined way within the development context.
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Fig. 4.14. Security pattern example: secure channel

4.4 Notes

Compared to research done using formal methods, less work has been done
using software engineering techniques for computer security. Some examples
will be presented in Chap. 9.

The basic ideas introduced in this chapter were presented in [Jiir01i]. Apart
from earlier work on using UML for role-based access control in [FH97], this
thus seems to be the first comprehensive and formally based approach to using
UML for secure systems development. Since then, interest in secure systems
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development using UML has quickly grown. An overview on the current lines
of work is given in Chap. 9.

In [JirOle, Jiir0O4c], UMLsec is applied to the security analysis of a smart-
card based electronic purse systems. [JiirQ1h] tailors the methodology to the
development of security-critical Java-based systems and [Jiir02e] to CORBA-
based systems. [JlirOlc] presents a business-process centered development,
and [JGO3] is concerned with applications in the Automotive domain. These
applications are explained in detail in Chap. 5, in addition to other appli-
cations. A goal-oriented development methodology is presented in [Jiir(02j].
[Jir01d, Jir02i] explains how to perform security analysis of UMLsec models
based on a formal semantics for a suitable fragment of UML. The ideas on
how to use UMLsec to enforce established security engineering principles in
Sect. 4.2 are taken from [Jiir02c]. The material in Sect. 4.3 has been reported
in [Jir01j, JPWO02]. [PJWBO03] defines a use case driven development process
with UMLsec and [HJ03b, JH04] explains how to perform model-based risk
assessment in the context of UMLsec. UMLsec has been presented in invited
conference talks [Jir02b, Jir02g, Jir03c, Jir03g, Jir04d, Jir04f], summer
school lectures [Jlir04g, Jir04i, Jiir05], and a series of tutorials at interna-
tional conferences [Jiir04e]. Other literature on UMLsec will be referred to in
the following chapters.

4.5 Discussion

We presented the extension UMLsec of UML for secure systems development,
in the form of a UML profile using the standard UML extension mechanisms.
Recurring security requirements are written as stereotypes; the associated
constraints ensure the security requirements on the level of the formal seman-
tics, by referring to the threat scenario also given as a stereotype. Thus one
may evaluate UML specifications to indicate possible vulnerabilities. One can
thus verify that the stated security requirements, if fulfilled, enforce a given
security policy.

We indicated how one could use UMLsec to model security requirements,
threat scenarios, security concepts, security mechanisms, security primitives,
underlying physical security, and security management. These are the aspects
which were argued to be required for a secure systems extension of UML.

We also considered how UMLsec could be used to encapsulate established
rules on prudent security engineering, also by applying security patterns, and
thereby to make them available to developers who are not security experts.
While UML was developed to model object-oriented systems, one can also
use UML and UMLsec to analyze systems that are component-oriented rather
than object-oriented, by not making use of OO-specific features and making
sure that the underlying assumptions, such as controlled access to data, are
ensured.
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For defining UMLsec, we made use of experience in the development and
analysis of security-critical systems using UML in several industrial projects
involving German government agencies and major banks, insurance compa-
nies, smart card and car manufacturers, and other companies. Some examples
for security designs from these projects will be presented in Chap. 5.
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Applications

In this chapter, we show how to apply the UMLsec notation in the context of
model-based security engineering in several case-studies.

We demonstrate stepwise development of a security-critical system with
UMLsec by the example of a secure channel design, together with a formal
verification. A flaw is uncovered in a variant of the handshake protocol of the
Internet protocol TLS proposed in [APS99], for which we suggest a correction,
and verify the corrected protocol.

Next, we apply UMLsec to a security analysis of the Common Electronic
Purse Specifications, a candidate for a globally interoperable electronic purse
standard. We discover flaws in the two central parts of the specifications (the
purchase and the load protocol), propose corrections, and give a verification.

Finally, we show how to use UMLsec to correctly employ advanced Java
2 security concepts such as guarding objects in a way that allows formal
verification of the specifications.

These security analyses can be performed using the UMLsec tool support
shortly presented in Chap. 6. In addition, the proofs for the statements in this
chapter can be found in Appendix C.

5.1 Secure Channels

As an example of the stepwise development of a secure system with UML
we give an abstract specification of a secure channel and refine it to a more
concrete specification. The abstract specification satisfies secrecy, and by our
preservation result the concrete one does as well.

Figure 5.1 gives a high-level system specification in the form of a UML
subsystem C for communication from a sender object to a receiver object,
including a class diagram with appropriate interfaces. Note that in this sim-
plified example, which should mainly demonstrate the idea of stepwise devel-
opment, we are only concerned with fixed participants S and R. Therefore,
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Fig. 5.1. Example subsystem: sender and receiver

authentication is out of scope of our considerations. A more realistic example
with a more in-depth security analysis can be found in Sect. 5.2.

In the subsystem, the Sender object is supposed to accept a value in
the variable d as an argument of the operation send and send it over the
«encrypted » Internet link to the Receiver object, which delivers the value as a
return value of the operation receive. To associate the behavioral specifications
in the statecharts to their context, we add the names of the relevant states
in the activity diagram next to the statecharts. Note that the behavior of the
sender could also be specified by a statechart consisting of only one state.
The version given here is slightly more readable. According to the stereo-
type «critical » and the associated tag {secrecy}, the subsystem is supposed
to preserve the secrecy of the variable d.
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We show that this is actually the case. In fact, we show a result which is
slightly stronger than the one stated above, where the adversary is allowed to
have some additional initial knowledge, which will be useful in the following.

Proposition 5.1. The subsystem C preserves the secrecy of the variable d
from adversaries of type A = default with specified previous knowledge KY,
given inputs from Data \ K&.

Note that this statement refers to an idealized model where the adversary is
by definition unable to interfere with the protocol. Also, as mentioned above,
we consider only fixed participants in this case, so that the intended protocol
execution is in fact the only possible one. This is of course not realistic in
general, but the aim is to exhibit conditions in the following under which it
would be justified to use such an idealized model of a secure channel.

Integrity is not within the scope of the current considerations but holds for
both d and d’ since the adversary cannot actively interfere with the protocol.
Since d’ is intended to have the same value as d, secrecy of d’ follows from
secrecy of d and integrity of d’ with respect to the value in d.

Now assume that we would like to replace the abstract requirement that
the communication should happen over an encrypted link by a more concrete
specification of the encryption mechanism. Thus we construct a refinement C’
as in Fig. 5.2.

Since we only want to demonstrate the principle of developing a secure
channel, we assume for simplicity that the sender and receiver already know
each other’s public keys. The protocol then exchanges a symmetric session
key using those public keys, since encryption under symmetric keys is more
efficient. Note that the protocol only serves as a simple example, not to propose
a new protocol of practical value. We assume that the secret keys belonging to
the public ones are kept secure. The session keys k,, for € N, are specified to
be created freshly by the receiver before execution of the protocol, as stated
by the tag {fresh}. As can be seen from the UML specification, the associated
constraint as defined in Sect. 4.1.2 is actually fulfilled: The values k, belong to
the scope of Receiver within the subsystem specification SecureChannel, since
expressions of the form k,, for any subexpression z, only appear within the
Receiver object and the associated statechart. For readability, in this chapter
we just write k_ : Data to denote an array whose fields k., have the type Data.

Recall that we leave out the explicit assignment of initial values to constant
attributes and instead take these constants as attribute names, such as the
keys in this example. As a convention, we distinguish these constant attributes
by underlining the attribute type. Note that the keys and nonces, as different
constant symbols in Keys U Data, are mutually distinct by definition of the
algebra of expressions in Sect. 3.3.3. Therefore, they are mutually independent
in the sense of Definition 7.36 by Fact 7.38, and also independent of the other
expressions in the diagram. We use the notation var ::= exp to be able to
write an expression exp more shortly as var, as explained in Sect. 3.2.4
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«call»
******** ===

«send»

Fig. 5.2. Example subsystem: secure channel

The behavior of the sender thus includes retrieving the signed and en-
crypted symmetric session key k; from the receiver, checking the signature,
and encrypting the data under the symmetric key. Encryption is done to-
gether with a sequence number i, to avoid replay. We assume the natural
numbers i, j to be in Data here and in the following: N C Data. The receiver
first gives out the key k; with a signature and also with a sequence number j,
and later decrypts the received data, checking the sequence number.

The core message exchange between sender and receiver is thus as follows:
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R—S: {S’l‘ganl(kj =) Fks
S—R:{d:i}.
We show that C’ is a refinement of C in the sense of Definition 8.13.

Proposition 5.2. The subsystem C' is a delayed black-box refinement of C in
presence of adversaries of type A = default with

K N ({KSY, KR U {kn, {z i}, :2 € ExpAn €N}) =0

and for which Sz’gnK;l(k’ ::m) € K5 implies k' =k, for all m € N and
k' € Exp.

The condition in the statement of the above proposition means that the
previous adversary knowledge K% may not contain the secret keys Kg 1 Kgl
of the sender and the receiver, the secret session keys k,, any encryptions
of the form {z :: n},, and any signatures Siganl(k’ ::n) except for k' = k,.
Recall from Sect. 3.3.4 that K%, denotes the knowledge of the adversary before
the start of the execution of the system, that is in this case, before the first
iteration of the protocol. Thus the condition does not prevent the adversary
from remembering information gained from early iterations of the protocol
and use it in later iterations. The condition is thus not unrealistic, and it is in
fact necessary because if the adversary knows the expression {z :: n}i, before
the execution of the protocol which may be different from the expression
{y :: n}x, which will be sent out by S in the nth round of the protocol, the
adversary could substitute {y :: n}x, with {z :: n}x, without being noticed
which would destroy the integrity of the communication channel and then C’
would not be a refinement of C. Note that the sequence number n is necessary
to enable the receiver to check that the right session key is used for decryption
in the condition tail(Decy; (E)) = j, to prevent replay.

The analysis in the above proposition also covers the possibility that there
may be parallel executions of other instances of Client and Server, because
these can be simulated by the adversary. The result can be refined to establish
a property of “forward security” in the sense that the compromise of a current
session key does not necessarily expose future traffic, as defined in [And02].
We omit this here because we only want to demonstrate the basic technique
using this example, but refer to Theorem 5.5 for such a result for a different
protocol.

Note that C' is not an undelayed refinement of C, because of the delay
caused by the key exchange and possible additional delay caused by the ad-
versary: In C, the shortest output sequence containing a returnyeceive(d), after
some input send(d) is (0, 0,0, {return eceive(d) } ), namely in case the adver-
sary does not delete any messages. In C', it is (0,0, 0, 0, 0, {return;eceive(d) }),
because of the key exchange.

As an immediate conclusion of the above proposition, we derive the fol-
lowing result.
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Proposition 5.3. The subsystem C' preserves the secrecy of the variable d
from adversaries of type A = default with

KP N ({KSY, KRty U {kn, {z = n}e, :2 € ExpAn €N}) =0

and for which Siganl(k’ :m) € Kb implies k' = ky, for all m € N and
k' € Exp.

Thus the specification fulfills the constraints of the stereotype « data security »
with respect to the adversary type stated above.

As for Proposition 5.2, this result can be refined to establish a version of
“forward security”.

5.2 A Variant of the Internet Protocol TLS

We analyze a variant of the handshake part of the Internet security protocol
TLS! proposed in [APS99]. We uncover a flaw first published in [Jiir01g],
suggest a correction, and verify it.

The Handshake Protocol

The goal of the protocol whose core is given as a UML subsystem 7 in Fig. 5.3
is to establish a secure channel over an untrusted communication link between
a client and a server. This channel is supposed to provide secrecy and server
authenticity, as specified by the {secrecy} and {authenticity} tags.

We assume that the set of data values Data includes names C and S for
each instance C : Client and S : Server. The protocol assumes that each client
Cis given the server name S; before the ith execution round of the protocol part
under consideration. The server is not given the client name in advace, since no
client authenticity is to be provided by the protocol. In our model we restrict
ourselves to considering the first | executions of the protocol, where | is an
arbitrary but fixed natural number. Note that each C may be given a different
sequence of server names. More precisely, these would have to be referred to
as C.S;. We omit the instance prefixing for readability where no confusion
can arise. C and S are variables representing arbitrary names. In particular,
both client and server can run the protocol with arbitrary servers and clients.
Note also that the adversary controls the communication link between client
and server. In our model, this is captured by enabling the adversary to read,
delete, and insert messages at the corresponding link queue. Therefore, the
adversary is able to insert any message communicated over the link in the
adversary’s current knowledge. In particular, the adversary may also perform
the protocol with either the client or the server, by attempting to take on

L' TLS (Transport Layer Security) is the current version of the Internet security
protocol SSL (Secure Sockets Layer).



5.2 A Variant of the Internet Protocol TLS 81
: «data security»
M {adversary=default} ’_L‘
C:Client «critical»
{secrecy={s_,Kc'}} {fresh={N_}}
{integrity={s_N_Kc,Kc Kca,i}}
{authenticity=(k, Si)} C:Client | S:Server
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Fig. 5.3. Variant of the TLS handshake protocol
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the role of a server or a client. Note that one may also specify the adversary
to actually be an instance of a server or client, by adding the access threat
to a suitable node stereotype attached to the relevant object in the object
diagram. This is not consider here because we assume that all servers and
clients are trustworthy.

We assume that each C (resp. each S) has a public key K¢ (resp. Ks) with
associated private key Kc! (resp. Kg!). We assume that there is a way for
C to obtain the public key Kca of the certification authority guaranteeing
its integrity. Also, S securely obtains a certificate Sz’gnKC_Al (S :: Ks) signed by
the certification authority that contains its name and public key. Also, each
client is given the sequence of secrets si,...,s € Data® to be transmitted
and the nonces Ni,...,N; € Data. Again we write s_: Data to denote an
array with fields s; in Data. The nonces are specified to be created freshly
by the receiver before execution of the protocol, as stated by the tag {fresh}.
As can be seen from the UML specification, the associated constraint from
Sect. 4.1.2 is actually fulfilled: The values N; belong to the scope of Client
within the subsystem specification TLS variant, since expressions of the form
N,, for any subexpression x, only appear within the Client object and the
associated view of the sequence diagram. Similarly, the sequence of session
keys ki, ...,k € Keys® given to each server is specified to be fresh. Again, for
readability, we leave out the explicit assignment of initial values to constant
attributes, such as the keys, the nonces, and the values s, and S, here. Instead,
we take these constants as attribute names. To indicate this, the relevant type
names are underlined. Also, again, by definition of the algebra of expressions,
the keys and nonces are independent of each other and other expressions by
Fact 7.38. The subsystem specification given here could also be instantiated
with other initial values for the keys, the nonces, and the values s, and S, as
long as the keys and nonces remain distinct from other values. In that sense,
the specification can be viewed as parameterized over these values.

For readability we leave out a time-stamp, a session id, the choice of cipher
suite and compression method, and the use of a temporary key by Ssince these
are not relevant for the security requirements under consideration.

We recall that for each method msg in the diagram and each number n,
msg,, represents the nth argument of the operation call msg that was most
recently accepted according to the sequence diagram. Again, we use the no-
tation var ::= exp to be able to write an expression exp more shortly as var,
as explained in Sect. 3.2.4.

To associate the behavioral specifications in the sequence diagrams to their
context, we add the name of the relevant states in the activity diagram next
to the sequence diagram. Thus, the sequence diagram tls involving the objects
C and §; is used to specify the activities tls.C and tls.S; for any objects C and
Si. The sequence diagram is specified with respect to S;, since this is where
C sends its messages, depending on its attribute i. In contrast, the activity
diagram is specified with respect to S, because all clients and servers are
executed in parallel, independently of the value of i in any of the C. Note
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that it is well-defined to use a sequence diagram specifying S; to specify an
activity tls.S, because the object S; in the sequence diagram does not use the
parameter i.

The protocol proceeds as follows. We consider the ith execution round
C(i) of the client C and the jth execution round S;(j) of the server S; and
assume that S;(j) =S. That is, in the current execution round i, the in-
stance C aims to communicate with the instance S;, which is in its jth
execution round. The client C initiates the protocol by sending the mes-
sage init(Nj, Kc,Sigan_l(C : Kc)) to the server S. Suppose that the condition
[snd(Extk, (cc))=K¢] holds, where K¢ ::= inity and cc ::=inits, that is, the key
K¢ contained in the signature matches the one transmitted in the clear. Then
S sends the message resp({Sz’gnKs_l(kj i N’)}K:c,Sigan—Al (S :: Ks)) back to C,
where N’ ::= init;. Now suppose that the condition

[fst(Extk, (cs))=S A snd(&z:tK:Si (Dechl (ck)))=N;]

holds, where cs::=resp;, ck::=resp,, and Kg ::= snd(Ertk, (cs)), that is, the
certificate is actually for S and the correct nonce is returned. Then C sends
xchd({si}«) to S, where k ::= fst(Extk, (Dechl(ck))). If any of the checks fail,
the respective protocol participant st(I)ps the execution of the protocol.

In the traditional informal notation already used for example in [NS78],
the protocol would be written as follows:

C—-S: N;, Kc,Sigan—l(C I Kc)
S—C: {SignKs—l(kj u Ni)}Kc,Sig’n,Kc—Al (S b Ks)
C—>S: {si}kj-

This notation may seem simpler than the sequence diagram in Fig. 5.3.
However, it needs to be interpreted with care [Aba00]. For example, from the
first line, we can conclude that C sends N;, Kc, Sz’gan—l(C = Kc) to the net-
work, with intended recipient S, and that S expects a message of the form
N, Ki, Siganl(X :: Ky), seemingly coming from C. If the message is sent
over an untrusted network, we cannot conclude for example that K; = Kc.
Therefore, one needs to make assumptions such as that S checks that the
three occurrences of K¢ do indeed coincide, that is, that K; = K, = K3 holds.
Unfortunately, misinterpretation of protocol specifications is a major source
of security weaknesses in practice. Therefore, when using this notation, one
should make sure that the above-mentioned assumptions are understood by
the implementor of a protocol. Our aim here is to use the UML as a notation
that is widely used among software developers beyond the community of se-
curity experts, without deviating from its standard definition any more than
what may seem necessary. Since the UML sequence diagram semantics does
not entail the above-mentioned assumptions, we include them explicitly by
referring to sent and received values in different ways and including checks in
the sequence diagram to ensure that they actually coincide.



84 5 Applications
The Flaw

When analyzing the specified protocol for the relevant security requirements
using the automated analysis tools presented in Sect. 6.2.1, we observed the
following attack.

Theorem 5.4. For given C and i, the UML subsystem T given in Fig. 5.8
does not preserve the secrecy of s; from adversaries of type A = default with
{Ks,Ka, K31} C K.

This means that the protocol does not provide its intended security require-
ment, secrecy of s;, against a realistic adversary.

The message flow diagram corresponding to this man-in-the-middle attack
follows.

Ni::Kc::Sigan_l (C::K¢) Ni::KA::SignK;1 (C::Ka)

C A S
c {Siganl(kj::Ni)}Kc::SiganAl(S::Ks) 4 {Siganl(kj::Ni)}KA::SignKC,Al(S::Ks) s
{sity {si}y
C A S

The authors of [APS99] have been informed about the problem.

The Fix

We propose to change the protocol to get a specification 7' by substituting
ki :: N; in the message resp by k; :: N; :: K¢ as in Fig. 5.4, and by including
a check regarding this new message part at the client. Here, the public key
K¢ of C is included representatively for the identity of C. One could also use
kj :: N :: C instead.

Again, in traditional informal notation, the modified protocol would be
written as follows:

C—S: N;, Kc,Sig’an—l(C u Kc)
S—C: {Siganl(kj N Kc)}Kc,SignKEAl(S it Ks)
C—S: {Si}kj-

We explain informally why this modification prevents the attack described
in Theorem 5.4. Note that the certificate sent in the first message of the
protocol is only a self-signed certificate, which does not provide full client
authenticity. Therefore, the adversary can still send a certificate to the server
claiming that the public key of the adversary in fact belongs to the client, as
in the attack described above. However, when the adversary then forwards the
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Fig. 5.4. Repaired variant of the TLS handshake protocol
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response from the server to the client, the server signed certificate contains
the public key received by the server in the first message of the protocol. If
the adversary again forwards this certificate to the client, the client will notice
that a false public key has been submitted on the client’s behalf and will stop
execution of the protocol because the check that has been newly introduced
fails. Conversely, the client will only send the secret under the session key
received if it is signed by the server concatenated with the public key of the
client. This certificate, in turn, the server only sends out encrypted under the
same public key, which the adversary cannot decrypt. Here it is essential that
the session keys differ for different iterations of the protocol.

Of course, the above arguments may convince the reader that the particu-
lar attack exhibited in Theorem 5.4 is prevented by the modification proposed
here, but they give little confidence that the modified protocol is immune
against all other attacks that may be possible. We therefore prove formally
that the protocol specification is secure with regards to our adversary model.
More specifically, we show that the protocol specification in fact fulfills the
constraints associated with the « data security » stereotype with respect to the
adversary given below. We restrict outselves to proving this for the {secrecy}
property. The properties {integrity} and {authenticity} can be established sim-
ilarly. Note that the {integrity} goals formulated in Fig. 5.4, here meaning that
the adversary should not be able to make the atttributes take on values previ-
ously known only to him, are straightforward to verify since they only concern
attributes that in Fig. 5.4 remain constant, apart from i and j that are sim-
ply counted upwards. One could also formulate other integrity requirements,
such as that the value C.k actually coincides with the key S.k;, but we do not
consider this here.

Theorem 5.5. Suppose we are given a particular execution of the repaired
TLS variant subsystem T' including all client and server instances, a client C,
and a number I with S = S;. Suppose that the server S is in its Jth execution
round in the current execution when C in its Ith execution round initiates
the protocol, that is, C.i =1 and S.j = J. Then this execution of T' preserves
the secrecy of C.s; against adversaries of type A = default whose previous
knowledge K" fulfills the following conditions:

e we have
({c.s,, KL KU {Sk :j> J}
U{{SignKs—l(X 2 CNypKe)bke : X € Keys}) NKY =

e for any X € Exp, Signkgl(C 2 X) € K% implies X = K¢, and
e for any X € Exp, SignKa:(S i X) € Kb implies X = Ks.

The condition in the statement of this theorem means that the previous
adversary knowledge K% may not contain the current secret C.sy, the secret
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keys K¢ 1, Kg 1 of the sender and the receiver, the current and future session
keys S.kj, any encryptions of the form {Siganl(X 2 C.N7 :: K¢) }kc, and any
signatures Sigan_l(C 2 X) (except for X = K¢) and Sigan—Al(S = X) (except
for X = Ks). This result covers the possibility that the adversary may gain
information from previous or parallel executions of the protocol, possibly with
other instances of Client or Server. With respect to parallel executions of other
instances, the restrictions on the adversary knowledge allow the adversary to
simulate other instances of the two classes, by giving the adversary access to
their private keys and certificates. With respect to previous executions, one
should note that the previous adversary knowledge K% refers to the knowl-
edge of the adversary before the overall execution of the system, not at the
point of the system execution where C.i = I and S.j = J (see the definition in
Sect. 3.3.4 and also the discussion and corollary below). In particular, the con-
dition in the statement of the above theorem does not prevent the adversary
from remembering information gained from earlier iterationsor the current
iteration of the protocol and use it in later iterations. It does, however, as-
sume that the adversary does not know the message {Siganl (kj =2 Ni = Ke) ke
of the server in the current protocol run before the current protocol. This
assumption is in fact necessary, because otherwise the attack described in
Theorem 5.4 would still work: The adversary would already have the certifi-
cate the client expects which includes the client’s key K¢, and can in addition
still get the current session key from the server as in the earlier attack by
sending the message N;:: K4 Siganl(C :: K4) containing the adversary’s
key K4 to the server.

Note also that since in the statement of the theorem we allow the keys S.k;
for j < J to be included in the previous adversary knowledge K%, the theorem
establishes a form of “forward security” in the sense that the compromise of
a current key does not necessarily expose future traffic. It is, however, not
sufficient to only require that S.k; ¢ K%, because the adversary may initiate
an intermediate interaction with S to increase its counter j.

The statement of the theorem concerns particular instances of Client and
Server and particular execution rounds. It is formulated in a ”rely-guarantee”
way, stating that if the knowledge previously acquired by the adversary satis-
fies the conditions of the theorem, then this execution preserves secrecy. This
approach allows one to consider security mechanisms such as security proto-
cols in the system context. To do this, one needs to specify explicitly which
values the remaining part of the system has to keep secret from the adver-
sary for the protocol to function securely. For example, the theorem needs to
assume that the certification authority does not issue any false certificates,
which is the third pre-condition in the theorem.

Although the conditions in the statement of the theorem only concern the
previous knowledge of the adversary before the overall execution of the sys-
tem, it follows from the theorem that the adversary knowledge before each
iteration of the system satisfies these conditions as well. That is, each itera-
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tion of the execution of the system preserves the conditions on the adversary
knowledge: If the conditions on the adversary knowledge were to be violated
in the course of the iterations before the one currently under consideration,
the result of the theorem would not be valid, and this statement holds for
each “current” iteration. Since the theorem above holds, this cannot be the
case.

We have the following corollary to the above theorem, where we assume
that the sets Client and Server of clients and servers are finite:

Corollary 5.6. Any execution of T' over all clients and servers and all exe-
cution rounds preserves the secrecy of each C.sy, for C: Client and 1 < I <,
against adversaries of type A = default whose previous knowledge K before
the overall execution of T' fulfills the following conditions:

e we have
({Kc_l, Ko, c.si,s.kj, {Signy—1 (X = e.Ni i Ko) b,
c:ClientAs:ServerAN1<i<IAl Sj/\XEKeys}) nKS =0,

e forany X € Exp and any c : Client, Sign,-1(c : X) € K implies X = K¢,
and
e forany X € Exp and anys : Server, Sigan_Al (s = X) € K implies X = K.

The condition in the statement of this corollary generalizes that of
Theorem 5.5 to arbitrary clients and servers. Note that the protocol rounds of
each client and server do not have to correspond in any particular way. This
means that any combination of clients c, servers s, secrets c.s;, and session
keys s.kj may occur. We only know that the same session key is not to be used
repeatedly. In particular, the C.s; under consideration could be transmitted
encrypted under s.k; for any server s and server round j. Thus we need to
assume s.kj ¢ K% for any s and j. Again note that K% denotes the knowl-
edge of the adversary prior to even the first execution round of the protocol.
That the session keys are not leaked during any of the protocol runs between
trustworthy participants then follows from our result.

5.3 Common Electronic Purse Specifications

In this section, we apply UMLsec to a security analysis of the Common Elec-
tronic Purse Specifications (CEPS) [CEPO01]. CEPS are a candidate for a
globally interoperable electronic purse standard supported by organizations
representing 90 % of the world’s electronic purse cards (including Visa Inter-
national). It is thus likely to become an accepted standard [AJSW00], making
its security an important goal.

Stored value smart cards, called “electronic purses”, have been proposed to
allow cash-free point-of-sale (POS) transactions offering more fraud protection
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than credit cards: Their built-in chip can perform cryptographic operations,
which allow transaction-bound authentication. In contrast, credit card num-
bers are valid until the card is stopped, enabling misuse. The card contains an
account balance that is adjusted when loading the card or purchasing goods.

Figure 5.5 gives an overview of the CEPS structure, following [CEPO01].

The scheme participants are thus:

the card issuer (issuing the cards),

the funds issuer (processing the funds needed for a linked card load),

the load acquirer operating a load device (where a card can be loaded),
the merchant operating a POS device (where a card can be used to pur-
chase a good),

the card running a card application, and

system operators for the processing of the transaction data.

Possible transactions are:

Purchase (the cardholder may purchase a good using the card),

Purchase Reversal (the merchant may reverse a purchase in case of a mis-
take),

Incremental Purchase (purchases may be performed incrementally, for ex-
ample for telephone calls),

Cancel Last Purchase (the cardholder may cancel the last purchase),
Currency Exchange (the cardholder may exchange currencies on the card),
Load (the cardholder can load the card), and

Unload (the card can be unloaded).

The general flow of resources through the system proceeds as follows: The

cardholder loads his card with his money. During the post-transaction settle-

Funds
> Issuer
LSAM
Load LT Card
Device > Issuer
Card |
Appl. |+
POS System
Device —L Operator
PSAM

Fig. 5.5. Common Electronic Purse Specifications overview



90 5 Applications

ment process, the load acquirer sends the money to the relevant card issuer.
The cardholder buys a good from a merchant using his card. In the settlement,
the merchant receives the corresponding amount of money from the card is-
suer. Since the CEPS are designed to be a globally interoperable standard,
this overall transaction process may involve not only untrustworthy cardhold-
ers, but also corrupt merchants and load acquirers. Since card issuers can take
on the roles of load acquirers, the transactions may also involve competing
card issuers that may not trust each other. In a global situation, there is often
little hope to settle disputes using judicial means. It is therefore vital that
the specifications are designed in a way that requires minimal trust relations
between the transaction partners [CEPO1].

Here we consider two central parts of the CEPS: the purchase transaction,
an off-line protocol which allows the cardholder to use the electronic value on
a card to pay for goods, and the load transaction, an on-line protocol which
allows the cardholder to load electronic value on a card. In each case, we give
a simplified account to keep the presentation readable. For example, we omit
the request messages to the smart card that are only included in the protocol
because current smart cards communicate only by answering requests.

5.3.1 Purchase Transaction

The participants involved in the off-line purchase transaction protocol are the
customer’s card and the merchant’s POS device. Figure 5.6 gives an overview
of a POS device, following [CEPO01, Tech. Spec. p. 77]. The POS device con-
tains a Purchase Security Application Module (PSAM) that is used to store
and process data The PSAM, required to be tamper-resistant, could also be
implemented on a smart card. After the protocol, the account balance in the
customer’s card is decremented, and the balance in the PSAM is incremented
by the corresponding amount. The card issuer later receives transaction logs.
In addition to transactions using public terminals it is also intended to use
CEPS cards for transactions over the Internet [CEP01, Bus. Req. ch. X].

Specification

In Fig. 5.7 we give a specification of the purchase transaction as a UML subsys-
tem P. For simplicity, we do not consider exception processing: if, for instance,
a certificate verification fails, our model simply stops further processing.

We recall that for each method msg in the diagram and each number n,
msg,, represents the nth argument of the operation call msg that was most
recently accepted according to the sequence diagram. We continue to use
the notation wvar ::= exp where var is a shorthand for exp, as explained in
Sect. 3.2.4.

Apart from incremental transactions that are not considered here, security
functionality is provided only by the PSAM, and not the rest of the POS
device. Thus our protocol participants are
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POS Device Functional Components
Scheme
Operating
Data
Chip Card
Reader
Transaction
Data store
Display
(Optional)
POS
Terminal
Application Power Supply
User
Interface Key Pad
Collection
Interface
Receipt Printer
(Optional)
PSAM

Fig. 5.6. POS device overview

e the CEP card C, with identity ID¢ and public (resp. private) keys K¢ (resp.
Kc!), and

e the PSAM P, with identity IDp and public (resp. private) keys Kp (resp.
Ko 1).

Both also have stored the public key Kca of the certification authority before
the transaction. In addition, we also model the display which is security-
relevant in so far as the cardholder cannot communicate with his card directly.

Note that of course the protocol will be used with different cards during
the lifetime of a PSAM. For simplicity, we omit this aspect. Card revocation is
not considered here. Also, we assume that the sequence of transaction amounts
MpnT indexed by the transaction number NT is given, as well as the sequence of
session keys SKnT. These keys are required to be fresh at the PSAM object, as
indicated by the tag {fresh} defined in Sect. 4.1.2. In fact one can see from the
specification that expressions of the form SK,, for any subexpression z, appear
only at the PSAM object and the associated view of the sequence diagram.
Again, the keys, as different constant symbols in Keys, are mutually distinct
and thus mutually independent. Again, we write M_ to denote an array whose
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Fig. 5.7. Specification for the CEPS purchase transaction
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fields M, have the type Data. Also, again, constant attributes have their
initial values as attribute names and the corresponding attribute types are
underlined.

We leave as implicit the actual adjustment of the balance on the card,
which includes checking that the balance is greater than the charged amount.

At the beginning of its execution in the POS device, the PSAM creates a
transaction number NT with value 0. Before each protocol run, NT is incre-
mented. If a certain limit is exceeded, the PSAM stops functioning, to avoid
rolling over of NT to 0. Note that here we assume an additional operation,
the +, to build up expressions.

The protocol between the card C, the PSAM P, and the display D is
supposed to start after the card C is inserted into a POS device containing P
and D and after the amount M is communicated to the PSAM by typing it
into a terminal assumed to be secure.

Each protocol run consists of the parallel execution of the card’s and
the PSAM’s part of the protocol. The card and PSAM begin the proto-
col by exchanging certificates ID¢, Kc, SiganAl(ch =Kc) (resp. IDp, Kp,
Sz’gnKC_Al(le ::Kp)) containing their identifier ID¢ (resp. IDp) and their public
key K¢ (resp. Kp), together with the same information signed with the private
key K¢, j of the certification authority. Both check the validity of the received
certificate. That is, they check that the signature consists of the received
identifier and public key, signed with the private key K Al of the certification
authority, by verifying the signature with the public key Kca.

Note that the card C “knows” that it has received a valid certificate, but
does not know whether it has received the certificate for the PSAM P at the
present physical location, because it has no information regarding the identity
of P that IDp itself could be verified against.

The PSAM then proceeds by sending the Debit-for-Purchase message con-
taining the transaction number NT, and an encryption of the following data
under the public key k¢ received in the card’s certificate: The concatenation
of the price Myt of the good to be purchased, a symmetric session key SKy,
and the following data signed with the private key K;l: the amount My, the
key SKnT, P’s identifier IDp, the data idc earlier received as C’s identifier, and
the transaction number NT. The card then checks the validity of the signa-
ture with the earlier received public key kp against the received data amount
m, the received key sk, the received identifier idp, the own identifier ID¢, and
the received transaction number nt. The card then returns, firstly, E, which
consists of the values ID¢, idp, m, and nt, signed with the private key Kgl and
encrypted under the key sk, and, secondly, the values m and E signed with the
key sk. The PSAM verifies that the second part of the received message is the
concatenation of the amount Myt sent out previously and the first part of the
message, signed with the key SKnyt sent out earlier, and verifies that the first
part of the message, after decryption with the key SKnt, gives the signature of
the concatenation of the values idc, IDp, My, and NT. If all the verifications
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succeed, the protocol finishes, otherwise the execution of the protocol stops
at the failed verification.

Security Threat Model

The CEPS require the smart card and the PSAM to be tamper-proof, but
not the POS device [CEP01, Bus.req. p. 13, Funct. req. p. 20]. The purchase
transaction is supposed to provide mutual authentication between the termi-
nal and the card using a certificate issued by a certification authority and
containing the card’s or PSAM’s public key.

The smart card is inserted into a POS device and can thus communicate
with the PSAM. Since there is no direct communication between the card-
holder and the card, the information displayed by the POS device regarding
the transaction has to be trusted at the point of transaction. Security for
the customer against fraud by the merchant is supposed to be provided by
checking the card balance after the transaction and complaining to the mer-
chant, and if necessary to the card issuer, in the case of incorrect processing.
Similarly, security for the merchant against the customer is supposed to be
provided by exchanging the purchased good only for a signed message from
the card containing the transaction details, for which the merchant will receive
the corresponding monetary amount from the issuer in the settlement process
afterwards. More precisely, the merchant possessing the PSAM with identifier
IDp will, when presenting the signature E = Sz’gan_l(IDc::IDp::MNT::NT),
receive the monetary amount Myt from the account of the cardholder of the
card with identifier ID¢, once for each NT, provided K¢ is the key for IDc.

The idea is that risk of fraud is kept small since fraud should be either
prevented or at least later detected in the settlement, and certificates of cards
or PSAMs actively involved in fraud can be revoked using revocation lists
whose treatment is omitted here. Note that some kinds of fraud can only
be detected after a transaction. For example, the cardholder is unable to
communicate with the card directly to authorize the transaction. Therefore,
the POS device could simply charge a higher amount to the card than shown
in its display.

Thus we have the following three security goals:

Cardholder security: The merchant can only claim the amount which is reg-
istered on the card after the transaction and thus can be checked with the
cardholder’s cardreader.

Merchant security: The merchant receives a valid signature in exchange for
the sold good.

Card issuer security: The sum of the balances of all valid cards and all valid
PSAMs remains unchanged by the transaction.

When investigating the threats, one needs to take into account that the
protocol is also expected to be used over the Internet, and that the POS
device in which the PSAM resides and which provides the communication link
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between the card and the PSAM is not considered to be within the security
perimeter, as mentioned above.
The above discussion leads us to the following formalized security goals.
We call a key Kx walid for a card or PSAM with identifier 1D x if there
exists Sigan—Al(IDX :Kx) in a participant’s knowledge.

Cardholder security: For all ID¢, IDp, MyT, NT, Kgl such that K¢ is valid
for ID¢, if P is in possession of Sigan—l(lDC::IDP::MNT::NT) then C is
in possession of Siganl(MNT 3= SKnT::IDp D¢ i NT), for some SKyt and

K;l such that the corresponding key Kp is valid for IDp.

Merchant security: Each time D receives the value My, P is in possession of
Sig"KgAl(IDC”KC) and SignKE1(|Dc::IDp::MNT::NT) for some IDc¢, Kgl,
and a new value NT.

Card issuer security: After each completed purchase transaction, let S be the
sum of all Myt in the sequence consisting of the processed elements of
the form Sz’gan—l(IDc :IDp :: Myt ::NT) over all expressions |IDc, IDp, and

Kgl, such that the corresponding key Kc is valid for ID¢ and where the
NT are mutually distinct for fixed C. Also, let S’ be the sum of all My, in
the sequence of processed Sz’gnK;l(M;\lT, ::SKN7 21D 2 IDpr ::NT'), over

all expressions D¢/, IDp:, and K;,l, such that the corresponding key Kp:
is valid for IDp:, and where the NT' are mutually distinct for fixed C'.
Then S is no greater than S'.

Results

According to the assumptions of the CEPS, we consider a threat scenario
where the attacker is able to access the POS device links, and can access
other PSAMSs over the Internet, but is not able to tamper with the smart
cards. That is, we consider the insider attacker from Fig. 4.7.

Vulnerability

Under the current threat scenario, we find the following weakness with regards
to the above goal of merchant security, arising from the fact that the POS
device is not secured against a potential attacker that may try to betray the
merchant, and that the CEPS are also to be used over the Internet. The
attacker could for example be an employee, which is a realistic scenario. We
first sketch the idea of the attack informally and then exhibit a corresponding
attacker within our formal model.

The idea of the attack is simply that the attacker redirects the messages
between the card C and the PSAM P to another PSAM P/, for example with
the goal of buying electronic content, and to let the cardholder pay for it. We
assume that the attacker manages to have the amount payable to P’ equal
the amount payable to P. The attacker also sends the required message to
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the display which will then reassure the merchant that the required amount
has been received. The attack has a good chance of going undetected: the
cardholder will not notice anything suspicious, because the deducted amount
is correct. Also, the card registers the identifier idp: rather than idp, but
the identifiers are non-self-explanatory data that the cardholder cannot be
assumed to verify, and the card has no information about what the identity of
P should be. Furthermore, the identifier id¢ in the Deb message is as expected,
since P’ correctly assumes to be in a transaction with C. The merchant who
owns P will notice only later a lacking amount of Myt. Note that the PSAM
P is not in any way involved in this attack.

The message flow diagram corresponding to this attack follows, where
E::{Siganl(ch =1Dpr i MnT i NT) Foke

Ccert(IDc,Kc,SignK_l (|Dc::Kc)) CCeI’t(|Dc,Kc,Sig’nK_1 (|Dc::Kc))
CA CA ’
C A P

Pcert(IDp/ ,Kps ,Siganl (IDpr ::Kp1)) Pcert(IDp/ ,Kps ,Sig’rLK,1 (IDpr ::Kp1))
CA CA '
C A P

Deb(NT,{MNT::SKNT::SignK_l (Mn::SKnT::IDps ::idc::NT)}kc)
PI
A b

Deb(NT,{MNT::SKNT::SiQnK71 (MNT::SKNT::IDP’ ::idc::NT)}kc)
p’

C A

Resp(E,Sign gy (m::E)) Resp(E,Sign gy (m::E))

DiSp(MNT)

We now show that this attack is actually detected in our formal model, by
exhibiting a suitable attacker.

Theorem 5.7. P does not provide merchant security against insider adver-
saries with {Signy—1(IDc ::Kc), Ka'} C KR

This vulnerability has been first reported in [JWO01b] and the CEPS se-
curity working group has been informed and acknowledged the observation
[Hit01].

Note also that the attack is simplified if we assume that the attacker can
also eavesdrop on the connection between the terminal where the amount Myt
is entered and the PSAM P. Then the attacker only has to intercept My,
redirect all messages from C to P’ and back, and finally send Disp(Mnt) to
the display. If in addition to this we assume that the cardholder coincides or
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collaborates with the attacker, the attacker could simply intercept and remove
Myt and send Disp(MnT) to the display, because then the cardholder receives
the good without having to pay for it.

Proposed Solution

The problem can be solved by securing the communication link between the
PSAM and display, for example by using a smart card with integrated display
as the PSAM. One also needs to make sure that this PSAM cannot be replaced
without being noticed. This modification leads to the specification P’ with the
modified deployment diagram given in Fig. 5.8, and an otherwise unchanged
protocol specification.

POS device «POS device»
PSAM «smart.card»
PSAMapp «send» Dispapp
P:PSAM T D:Display
1
«send» '\ «send» «wire»
Card . ‘«smart.card»

Fig. 5.8. Repaired part of CEPS purchase specification

We now discuss the security of the improved version of the protocol.

Firstly, we argue that the specification provides the security properties
against insider adversaries ascribed to it according to its stereotypes following
Sect. 4.1.2.

Proposition 5.8. P’ provides secrecy of KEl, K;l and integrity of Kgl, Kc,
Kca, ID¢, K;l, Kp, MnT, SKnT, NT (meaning that the adversary should not
be able to make the atttributes take on values previously known only to him)
against insider adversaries with K§ N {K:' Kot} = 0.

Note that the proposition does not imply that C and P terminate the
protocol with the same value for Myt. In fact, this cannot be guaranteed,
since a “redirection attack” similar to the above still applies. Since now the
display can no longer be manipulated, it would be noticed immediately if the
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PSAM received less money than expected, but the money could in principle
still come from a different card than the one inserted into the POS device. The
kinds of integrity property relevant here are considered below as “cardholder
security” and “merchant security”.

Note also that the secure definition of Myt, which is outside the current
specification, relies on a secure connection between the terminal where the
amount is entered and the PSAM. Also, the creation of the session keys SKnt
is outside current scope. The values are simply assumed to be given.

We consider the formalized security goals from the above.

Theorem 5.9. Consider adversaries of type A = insider with

K% 0 (KT Kp? KA} U {SKnr : NT € N}
U{Siganl(E) :E € Exp} U {Siganl(E) : E € Exp}
U{Signsk,, (E) : E€ Exp ANT € N}) =0

and such that for each X € Exp with SignK&l (X::K) e KR, X = ID¢ implies
K =Kc and X = IDp implies K = Kp. The following security guarantees are
provided by P' in the presence of adversaries of type A:

Cardholder security: For all IDc, IDp, MnT, NT, Kgl such that K¢ is valid for
IDc, if P is in possession of Siganl(chi:lDP::MNT::NT) then C is in
possession of SignKFI(MNTIISKNTIIIDPIIIDCIINT), for some SKnT and
K;l such that the corresponding key Kp is valid for 1Dp.

Merchant security: Fach time D receives the value My, P is in possession of
Sigan—Al(ch =Ke) and Siganl(ch :1Dp :: Myt ::NT) for some IDc, Kgl,
and a new value NT.

Card issuer security: After each completed purchase transaction, let S be the
sum of all Myt in the sequence consisting of the processed elements of
the form Sigan_l(ch :2IDp:: Myt ::NT) over all expressions |D¢, 1Dp, and

KEl, such that the corresponding key K¢ is valid for 1Dc and where the

NT are mutually distinct for fized C. Also, let S' be the sum of all My,

in the sequence of processed Sign, -1 (Myq, ::SKyp ::IDe ::IDpr ::NT') over
PI

all expressions |D¢/, IDp:, and K;,l, such that the corresponding key Kp: s
valid for \Dp:, and where the NT' are mutually distinct for fized C'). Then
S is no greater than S'.

Note that the card cannot verify that the identity IDp corresponds to
the actual PSAM with which it communicates. The certificate only proves
that Kp is a valid public key that is linked to some identity IDp. There is
no information in IDp that links it to the physical POS device containing
the PSAM owning IDp, such as the name of the shop, or its location. This
information exists only at the card issuer and is not obtained during the
transaction. Thus, the card “knows” it owes money to the PSAM P with which
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it communicates, but does not know whether P is registered as being in the
physical location where the card currently is, and the card does not know what
this physical location is. Including this information would probably improve
the security of the protocol. For example, the attack described above could be
detected by the cardholder immediately after the transaction with a portable
cardreader, even if the POS device display is not within the security perimeter.
It would, however, probably also incur higher organizational expenses. Even
the validity of IDp is not relevant to the cardholder in the case of a successful
purchase. If IDp is not a valid identity, the cardholder will have the purchased
good anyway, but may not have to pay for it because in the settlement process
there will not be a legitimate claimer of the money. However, the validity of
IDp gives the cardholder a better prospect of claiming back an amount which
has been illegitimately charged to the card by a POS device, and therefore
the certificate for the POS is not redundant.

5.3.2 Load Transaction

Load transactions in CEPS are on-line transactions using symmetric crypto-
graphy for authentication. We only consider unlinked load, where the card-
holder pays cash into a, possibly unattended, loading machine and receives a
corresponding credit on the card. Linked load, where funds are transferred for
example from a bank account, the so-called funds issuer, is viewed as offering
fewer possibilities for fraud, because funds are moved only within one financial
institution [CEPO01, Funct. Req. p. 12].

Figure 5.9 gives an overview over the components at the load acquirer,
following [CEPO01, Tech.Spec. p.19]. To perform a cash-based load transaction,
the cardholder inserts his card into the card reader and the money into the
cash slot of the load device. To load the cash on the card, he enters the
PIN. Note again that the cardholder is not able to communicate with the
card directly, but only through the display of the load device. A Load Secure
Application Module (LSAM) is used to provide the necessary cryptographic
and control processing. The LSAM may reside within the load device or at the
load acquirer host. The load acquirer keeps a log of all transactions processed.
Through the load host application, the LSAM communicates with the card
issuer. Below, we analyze the load protocol between the card, the LSAM, and
the card issuer that is executed after the cardholder inserts the cash.

Specification

We give a specification of the CEPS load transaction, slightly simplified by
leaving out security-irrelevant details, but including exception processing.
The specification is given in form of the UML subsystem £ in Fig. 5.12.
For better readability, the enlarged class and statechart diagrams are also
given in Fig. 5.10 to 5.14. The values exchanged in the protocol are listed in
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Load Host

!

Card Issuer

Fig. 5.9. Load acquirer components

Fig. 5.16. For illustration, we also give a sequence diagram in Fig. 5.15 for one
scenario of the system behavior, namely the case where no exception occurs.

Again, we use the notation var ::= ezp as a syntactic short-cut. Here var
is a local variable not used for any other purpose and exp may not contain
var. Before assigning a semantics to the diagram, the variable var should
be replaced by the expression exp at each occurrence. Also, for increased
readability, we use pattern matching: for example, (Ida’,m’) ::= Init means
that when deriving the formal semantics of the sequence diagram, one would
have to replace Ida’ with Init; and m’ with Init, in each case.

As with the purchase protocol, the link between the LSAM and the loading
device, and the loading device itself, need to be secured. Otherwise an attacker
could initiate the protocol without having inserted cash into the machine. For
simplicity, we leave out the communication between the LSAM and loading
device to determine the amount to be loaded, but assume that the amount is
communicated to the LSAM in a secure way. Here, a CEP card name cep is
called valid if the name is registered at the card issuer and not on the list of
revoked cards.

For the participants of the protocol, we have the classes Card, LSAM, and
Issuer. Also, each of the three classes has an associated class used for logging
transaction data named CLog, LLog, and ILog, respectivly. The logging objects
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Fig. 5.10. Load transaction class diagram

simply take the arguments of their operations and update their attributes
accordingly. Their behavior is for readability omitted in Fig. 5.12.

We assume a sequence of random values rcyy to be given that is shared
between the card C and its card issuer |. These random values are required to
be fresh within the Load subsystem as indicated by the tag {fresh} attached to
Load which was defined in Sect. 4.1.2. Note that when viewing the Load sub-
system in isolation, the associated condition is vacuous: It just requires that
any appearance of an expression rc, in Load must be in Load. Using the {fresh}
tag at a top-level subsystem is still meaningful, because one may want to in-
clude the subsystem in another subsystem also stereotyped « data security »,
which would extend the scope of the freshness constraint to the larger sub-

Init(Ida,mn,

/Llog(cep,0,nt,rc) /| .0
/Llog(cep,my.nt,0) mly::=Sign, (cep::nt::lda::
@ Success n
> N Respl(cep,nt,s1,hc) my:islithc:thlyich2l,)
RespC(s3,rc) /Load(cep,lda,m,,nt,s1, hly::=H ash(lda::cep::nt::rl,)
[rc=0 V hc£H ash(lda::cep::nt::rc)] {rn 3, sMinshln,h211) h2l,::=Hash(Ida::cep::
/Comp(cep,lda,m,,nt,0,s3) nt::r2l, )

. RespL(s2)
Fail
RespC(s3,rc)
[rc # 0 A he=H ash(lda::cep::nt::rc)] /Credit(s2,rl,)
/Comp(cep,lda,0,nt,r2l,s3)

RespL(0)
/Credit(0,0)

Fig. 5.11. Load transaction: load acquirer
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Credit(s2,rl)

s1::=Signy_ (cep:dda::m::nt) hl::=Hash(lda::cep::nt::rl)
hee := Hash (Ida::cep:nt:rcay) [Extk,, (s2)7#cep:nt:slihl V rl=0]

Init(Ida,m) (ﬁ /RespC(s3,rcn)
esp

Init -
/Respl(cep,nt,s1,hcar) l ) s3::=8igny , (cep:lda::0:nt)
. [Extky (s2)=cep::nt::sl::hl A rl£0]
Credit(s2,rl) hl::=Hash(lda::cep::nt::rl)
/RespC(s3,0) ) /RespC(s3,rcny) (
Load Fail
s3:=8igny,, (cep:ldazm:nt)  s3:=8igny  (cep:lda::0:nt)
/Clog(Ida,m nt,s2,rl) /Clog(lda,0,nt,s2,rl)
Fig. 5.13. Load transaction: card
/ILog(cep,Ida,0,nt,r,ml,0)
Load(cep,lda,m,nt,s1,R,ml;hl,h2l) ]
/RespL(0) - " Fail
1= Decx, (R) Cnt ::="Hash(lda::cep::nt:ircn)

[otherwise]
Load(cep,lda,m,nt,s1,R,ml;hl,h2l)
@ Init Load?
[valid(cep) A Ezt, (s1)=cep::Ida::m::nt L
A&zt (ml)=cep::nt::lda::m::sl::hcae::hl::h2l]

s2:=S8igng,, (cepuntislzhl)  ri=Deck, (R)
hcne ::=Hash(Ida::cep::nt::rcyy) /RespL(s2)

Comp(cep,lda,m,nt,r21,s3)
/ILog(cep,lda,m,nt,r,ml,r2l)

®

Fig. 5.14. Load transaction: card issuer
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system. In this example, it would not make sense to attach the {fresh} tag
with value rc_ to any of the objects in Load, because the random values are
supposed to be shared among Card and Issuer. As usual, we write rc_ : Data to
denote an array with fields in Data. Also given are the random numbers rl,,
r2l, and the symmetric keys r, of the LSAM. These values are also supposed
to be generated freshly by the LSAM. In fact, one can see that expressions
of the form rl,, r2l,, r,, for any subexpression z, only appear in the object
and the statechart associated with LSAM. Again, the keys and random values
are independent of each other and of the other expressions in the diagram.
Also, again, constant attributes have their initial values as attribute names
and the corresponding attribute types are underlined. Finally, we are given
the transaction amounts m,. Before the first protocol run, the card and LSAM
initialize the card transaction number nt and the acquirer-generated identifi-
cation number n, respectively. Also, before each protocol run, the card and
LSAM increment the card transaction number nt and the acquirer-generated
identification number n, repectively, as long as a given limit is not reached (to
avoid the rolling over of the numbers).

Variable|Explanation

C card

L LSAM

| card issuer

rCnt secret random values shared between card and issuer
rln, r2lp |random numbers of LSAM

In symmetric keys of LSAM

mn transaction amounts

m, rl, hl {mp, rln, hlp as received at card issuer

nt card transaction number

n acquirer-generated identification number

Ida load device identifier

cep card identifier

sl card signature: Signy,, (cep::lda::m::nt)

hcne card hash value: Hash(lda::cep::nt::rcy)

ﬁ;:m hcne as created at issuer

rc, hc rCnt, hcnt as received at load acquirer

K key shared between card and issuer

Kii key shared between LSAM and issuer

ml, Sign, (cep::nt::lda:img::sl:the:thl:ih2ly) (signed by LSAM)
hln hash of transaction data: Hash(Ida::cep::nt::rl)
h2l, hash of transaction data: Hash(lda::cep::nt::r2l)
s2 issuer signature: Signy (cep::nt::sl::hl)

s3 card signature of the form Signy_ (cep::lda::m::nt)

Fig. 5.16. Values exchanged in the load specification
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We give a textual explanation of the UML specification. The protocol
between a card C, an LSAM L, and a card issuer | is supposed to start after
the card C issued by | is inserted into a loading device containing L and the
cardholder inserts the amount m, of cash into the loading device.

The LSAM initiates the transaction after the CEP card is inserted into
the load device, by sending the “Initialize for load” message Init with ar-
guments the load device identifier Ida and the transaction amount m,. This
is the amount of cash paid into the load device by the cardholder that is
supposed to be loaded onto the card. Whenever the card receives this mes-
sage after being inserted into the load device, it sends back the “Initialize
for load response” message Respl to the LSAM, with arguments the card
identifier cep, the card’s transaction number nt, the card signature s1, and
the hash value hc,. sl consists of the values cep, the received load acquirer
identifier Ida’ and amount m’, and nt, all of which are signed with the key
Kci shared between the card C and the corresponding card issuer I. hcy is
the hash of the values |da, cep, nt, and rcy. rcp is a secret shared between
the card and the issuer. The LSAM then sends to the issuer the “load re-
quest” message Load with arguments the received card identifier cep’, Ida,
mn, the received transaction number nt’ and card signature s1’, and the
values Enc(Kyy,r,), ml,, hly, and h2l,. Here Enc(Ky,r,) is the encryption
of the key r, under the key K, shared between the LSAM and the issuer.
Also, ml, = Sign, (cep’::nt’::lda:im, 251" hc'::hl,::h2l,) is the signature of
the data cep’, nt’, Ida, m,, s1’, hc’, hl,, and h2l, using the key r,, where hc’ is
the message part hcyy as received by the LSAM. hl, is the hash of the values
Ida, cep’, nt’, and rl,, while h2l, is the hash of the values Ida, cep’, nt’, and
r2l,.

The issuer checks if the received card identifier cep” is valid and verifies if
the received signature s1” is a valid signature generated from the values cep”,
the received load device identifier Ida”, the received amount m”, and the re-
ceived transaction number nt” with the key Kc¢j. Technically, it is checked
whether Extk, (s1”) = cep” ::1da” ::m" ::nt” holds. The issuer retrieves r' from
the received ciphertext R, which is supposed to evaluate to Enc(Kyy,r), us-
ing the key K| shared between the LSAM and the issuer. That is, we have
r' ::= Deck,, (R). He then checks if the received signature ml’ is a valid signa-

ture of the values cep”, nt”, Ida”, m”, hcnt7 hl, and h2l using the key r,
that is if Ext, (ml) = cep nt Ida m: 51 hcnt hl:: h2| Here hcnt is the hash of
the values Ida”, cep”, nt”, and rcp,.

If all these checks succeed, the issuer sends the “respond to load” message
RespL with argument s2 to the LSAM. s2 consists of the values cep”, nt”,
s1”, and hl’, signed with the key Kc. Otherwise, the issuer sends RespL with
argument 0 to the LSAM. He then sends the message llog with arguments
cep”,Ida”, the amount 0 (since the load was unsuccessful), nt”, ', ml’, and 0
(no r2l received from LSAM) to its logging object and finishes the protocol
run.
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If the LSAM receives an s2' # 0 as the argument of RespL, it sends the
“credit for load” message Credit with arguments the received signature s2’ and
the value rl to the card. If the LSAM receives a zero as the argument of RespL,
it sends the “credit for load” message Credit with arguments 0,0 to the card
and finishes the protocol run by returning the cash to the cardholder.

If the card receives the message Credit, it checks whether its first argument
s2' is the signature of the values cep, nt, s1, and hl”, which is defined to be the
hash of the values Ida’, cep, nt, and the second argument rl’ of Credit. Also,
it checks whether rl" # 0. If either of the two checks fail, the card sends the
“response to credit for load” message RespC with arguments s3 and rcp to
the LSAM, where s3 consists of the values cep, Ida’, the amount 0, and nt,
signed with the key K¢;. The card also sends the logging message Clog to the
object CLog, with arguments Ida’, the amount 0, nt, s2’, and rk’. If both checks
succeed, the card attempts to load itself with the amount m’. If it succeeds, it
sends the message RespC with arguments s3 and 0, where s3 is defined to be
the signature of the values cep, Ida’, m’, and nt using the key Kc;. If it fails, it
sends the message RespC with arguments s3 and rc,;, where s3 is defined to
be the signature of the values cep, Ida’, the amount 0, and nt using the key
Kc|.

If the LSAM receives a message RespC with arguments s3' and rc’, assum-
ing it has not finished already, it checks whether rc’ # 0 and the hc’ received
in the first message from the card is the hash of the values Ida, cep’, nt’, and
rc’. If yes, that is, the load was unsuccessful, the LSAM sends the “transaction
completion message” Comp with arguments cep’, Ida, the amount 0, nt’, r2l,
and s3' to the issuer. Also, it sends the logging message Llog with arguments
cep’, the amount 0, nt’, and rc to its logging object LLog. Then it finishes
by returning the cash to the cardholder. If no, the LSAM sends the message
Comp with arguments cep’, Ida, m,,, nt’, 0 (no r2l), and s3’ to the issuer. Also,
it sends Llog with arguments cep’, m, nt’, and 0 to LLog. Then it finishes
without returning the cash to the cardholder.

If the issuer device receives the message Comp with arguments cep”, Ida”,
m”, nt”, r2l, and s3” from the LSAM, assuming it has not finished already,
it sends the message llog with arguments cep”, Ida”, m”, nt”, ', ml’, and r2|
to the object lLog and finishes. In this case, either m” is supposed to be the
transaction amount and r2l = 0, or m” = 0 and r2| # 0.

Security Threat Model

We consider the threat scenario for the load transaction. Again, the assump-
tion is that the card, the LSAM, and the security module of the card issuer
are tamper-resistant with respect to the adversary under consideration. In
particular, the contained secret keys cannot be retrieved physically. The pro-
tocol can, for example, be attacked by attacking the communication links
between the protocol participants. Also, one of the participants cardholder,
load acquirer, or card issuer could exchange their respective device with one
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exhibiting different behavior. Again, since there is no direct communication
between the cardholder and the card, security for the customer against fraud
by the load acquirer is supposed to be provided by checking the card balance
after the transaction and complaining to the load acquirer, and if necessary
to the card issuer, in the case of incorrect processing.

Security for the load acquirer against the customer partly relies on the
fact that the signed message from the load acquirer acknowledging receipt of
the payment is sent to the card only after the cash is inserted into the loading
device. However, since the load acquirer is obliged to return the cash in the
case of a failure in the loading process, one needs to make sure in turn that the
cash is returned only in exchange for a valid certificate from the card stating
that the loading process has been aborted. Otherwise the cardholder could
later claim not to have received the cash-back.

More precisely, the value ml, “provides a guarantee that the load acquirer
owes the transaction amount to the card issuer” for each new n, as required
in [CEPO1, Tech. Spec. 6.6.1.6]. This guarantee is negated if the load acquirer
is in possession of the value rc,, that is sent from the card to the LSAM
in case the card wants to abort the loading protocol after the LSAM has
released ml,. A failed load is signaled by the LSAM to the issuer by sending
the value r2l,,, which can be verified by the card issuer by computing the hash
of Ida::cep::nt::r2l, and comparing it to the value h2l, received earlier from
the LSAM. The load acquirer can verify that rcn is genuine by comparing the
hash of |da::cep::nt::rc,, with the value hcy, received in the first message from
the card, which is checked to be genuine by the card issuer, who receives it in
the value ml,. The value rl, gives a guarantee by the LSAM to the card that
the load can be completed and that the load acquirer will pay the transaction
amount to the card issuer. The card can verify the validity of rl, by computing
the hash hl, of Ida::cep::nt::rl, and verifying that the signature s2 forwarded
by the LSAM from the card issuer was constructed from cep::nt::sl::hl,. The
signatures sl and s3 from the card indicate, respectively, the card’s intention
to load the contained amount and the card’s notification to have loaded the
contained amount.

While it may seem reasonable that the cardholder trusts the card issuer, it
may not be reasonable to expect that the load acquirer trusts the card issuer.
The aim of the CEPS is to provide a globally interoperable system. Since
many card issuers will also operate as load acquirers within their regional
boundaries, this means that if cardholders load their cards elsewhere, these
load acquirers are operated by competing card issuers. Competing card is-
suers may not trust each other, especially when jointly operating a relatively
complex system that may provide temptation for fraud even at corporate
level. This temptation is real: For example, according to [And01], the urban
train operators in a major English metropolis attempted to cheat each other
about passenger numbers on their respective parts of the urban train system
to increase their own revenue at the expense of their competitors). The CEPS
plainly contend that “electronic purse system participants must be assured
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that load/unload devices must not link to the system without security that
protects all participants from fraud” [CEPO01, Bus. req. p. 19]. However, the
cardholder and the load acquirer may not trust each other, and the card issuer
may not trust either the cardholder or the load acquirer. In particular, the
issuer needs to have valid proof in case the cardholder or the load acquirer
disputes a transaction in the post-transaction settlement process. Thus the
security of the system relies crucially on the validity of the audit data.
Following the above discussion, we derive the following security conditions:

Cardholder security: If the card appears to have been loaded with a certain
amount according to its logs, the cardholder can prove to the card issuer
that there is a load acquirer who owes the amount to the card issuer.

Load acquirer security: A load acquirer has to pay an amount to the card
issuer only if the load acquirer has received the amount in cash from the
cardholder.

Card issuer security: The sum of the balances of the cardholder and the load
acquirer remains unchanged by the transaction.

Note that the protocol does not ensure that if the cardholder inserts cash
into the loading device, the card will be loaded — there is the usual risk that the
machine simply retains the money without further action, or loads the card
with a smaller amount than was inserted. In this case the cardholder can only
make a complaint, if necessary through the card issuer in the post-transaction
settlement scheme. The correct functioning of the settlement scheme relies
on the fact that the cardholder should only be led to believe that a certain
amount has been correctly loaded (for example, when checking the card with
a portable cardreader) if the cardholder is later able to prove this using the
card. Otherwise the load acquirer could first credit the card with the correct
amount, but later in the settlement process claim that the cardholder tried to
fake the transaction.

Results

We turn to the formalizations of the above security conditions.

We start with the condition providing security for the load acquirer. Ac-
cording to the CEPS, the value ml,, together with the value rl, sent in the
CreditforLoad message to the card, is taken as a guarantee that the amount
m specified in ml, has to be paid by the specified load acquirer to the issuer
of the specified card, unless it is negated with the value rc,, [CEPO1, Tech.
Spec. 6.6.1.6]. The security condition is thus formalized as follows:

Load acquirer security: Suppose that the card issuer | possesses the value
ml, = Sign, (cep::nt::lda::m,::sl:thcy::hly:th2l,) and that the card C
possesses rl,, where h, = Hash(lda::cep::nt::rl,). Then after execution of
the protocol either of the following two conditions hold:
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e amessage Llog(cep,lda, m,, nt) has been sent to | : LLog (which implies
that L has received and retains m, in cash) or

e a message Llog(cep,lda,0,nt) has been sent to |: LLog (that is, the
load acquirer assumes that the load failed and returns the amount
m, to the cardholder) and the load acquirer L has received rcp; with
hcyy = Hash(lda::cep::nt::rcy) (thus negating mly,).

Vulnerabilities

When trying to prove the above condition, one comes across the following
weaknesses which break both conditions required to hold for load acquirer
security. We first explain the problem intuitively before we prove the corre-
sponding result.

Firstly, the value ml, is only protected with the key r, which in turn is
only protected with the key K| shared between the load acquirer and the card
issuer. Further, the hash value hl, does not depend on the amount m. Thus the
card issuer can modify the amount m, contained in ml, to a greater amount m.
In more detail, having received {r,}«,, from the load acquirer, the issuer can
replace the value ml, = Sign,_ (cepnt::lda::my:sl:ihen:: hly:h2l,) received
from the load acquirer by the value ml = Sign, (cep::nt::lda:im::sl:hey::
hl, ::h2l,). Consequently, the load acquirer only receives m, in cash, but has
to pay m to the card issuer.

Here we assume that the card issuer is in the judicially stronger position.
For example, the load acquirer may have signed a contract to pay whichever
amount m contained in such an ml,. In a different judicial situation, the load
acquirer might instead betray the card issuer, by claiming that the card issuer
modified ml;, to contain a greater amount m, and thus pay only the allegedly
correct smaller amount m’. This is an example of the observation that security
analysis of practical systems has to take into account the legislative situation
[AndO1].

Secondly, there is a vulnerability against the load acquirer arising when
the card sends an rc, to the load acquirer in the RespC message. The only
way in which the load acquirer can verify the validity of this value is against
the hash hc,; sent from the card to the load acquirer in the Respl message.
Since neither the secret rcy,; shared between the card and the issuer nor the
hash hc,; is protected by any signature, the load acquirer has no way to prove
in the post-transaction settlement process that rcp is genuine, and that thus
the cash has been returned to the cardholder: The card issuer can simply
claim that the card did not send a value rc,; to the load acquirer, but that the
load acquirer invented rc,; and computed hc,, from it. Since the card issuer
controls the settlement process, the load acquirer would have to pay (or go to
court, with unclear prospects of success).

Theorem 5.10. £ does not provide load acquirer security against adversaries
of type insider with {cep,lda,m,} C K%.
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This vulnerability has been reported in [JiirOle]. Again, the CEPS security
working group has been informed and acknowledged the observation [Hit01].

Note that even if the signatures s1 and s3 are considered part of the guar-
antee that the load acquirer has to pay the contained amount, this does not
remove the weakness entirely, but only requires the card issuer to also modify
the issued cards. The load acquirer is not able to verify that the signatures
sl and s3 created with the key K¢ shared between the card and the issuer
contain the correct amount m.

Proposed Solution

We propose the following modifications to the protocol:

e ml, should be protected by an asymmetric key: ml, := Sz’gnKL_l(cep’ ant'

Ida::m::s1’::hc’::hly ::h2l,) for a private key Kfl of the load acquirer with
associated public key K, and

e in the message Respl, the issuer should also send a signature certifying
the validity of hcpy: RespL(sQ,SignKrl(hcnt)) for a private key K" of the
card issuer with associated public key K.

The modified UML subsystem specification £’ is given in Fig. 5.17. For
better readability, the enlarged class and the modified statechart diagrams
again are given in Fig. 5.18 to 5.20, with the corresponding exemplary se-
quence diagram in Fig. 5.21. We assume that the public keys have been ex-
changed in the initialization phase of the system not considered here.

IntCard «interface» Intlssuer «interface»

Respl(cep,nt,sl,hc)

RespC(s3,rc) | A RespL(s2,s5)

7 \ .
«send» . ‘ 4 | «send»
«critical» LSAM «critical» : —
Card {secrecy={Ka}} {secrecy={K'}} {fresh={rl_,r21_}} Issuer «CrEIlcaI»
i ity={K {integrity={K,K*Ky,Ida,n,rl_,r2l_,m_}} . {SeFYECV:{KC“_Kl e 1t
{integrity={Kc ,cep,nt,rc_}} L {integrity—{Kc|,K. %KLJC,}}
cep,nt: Data; rc_: Data Ida,n,m_: Data;rl_,r2l_: Data —
Kc|7:K.eys jre_: a KL7K|__}r_7KI3KeyS rc_:Data; K ,Kc,K" " : Keys
- Respl(cep,nt,sl,hc Load(cep,!da,m,nt,s1,ml,h
Init(Ida,m) . pé g ) hi,h21)
Credit(s2,rl) ReSpL((Sz'rg)) | —.| Comp(cep,lda,m,nt,r2l,s3)
‘ "~ RespL(s2,s « » o« »
' «send»  .send» : send : send
y | «send» ¥
v
Clog LLog lLog
Ida, ™, nt, 52, rl: list Tep, m, nt, ¥c: list cep, Ida, m, nt, ml, r2I: list
Clog(lda,m,nt,s2,r) Llog(cep,m,nt,rc,s5) llog(cep,lda,m,nt,r,ml,r2l)

Fig. 5.18. Repaired load transaction class diagram
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/Llog(cep,0,nt,rc,s5) ‘

Llog(cep,my,nt,0,s5) mln::SignK,l (cep::nt::lda::

Success L
@ L Respl(cep,nt,s1,hc) mp::s1::hc:hly::h2l,)
RespC(s3,rc) /Load(cep,Ida,m,,nt,s1, | hln:=Hash(lda::cep::nt::rly)

[re=0 V hc#H ash(Ida::cep::nt::rc) ] Miy,hly;h2ly) | h2lni=Hash(Ida::cep::
/Comp(cep,lda,m,,nt,0,s3) nt::r2l,)
Fail RespL(s2:55) | Credit
RespC(s3,rc)
[rc # 0 A he=Hash(lda:cepintizre) ] EEK) (s5)=cep::lda::my::nt::hc] RespII_(O)
/Comp(cep,lda,07nt7r2l7s3) /Credit(sQ,rI") @CYEdIt(0,0)

Fig. 5.19. Repaired load transaction: load acquirer

®

/ILog(cep,lda,0,nt,ml,0)

Load(cep,lda,m,nt,s1,ml.hl h2l) ]
Fail

[otherwise] H\cnt::Hash(lda::cep::nt::rcnt)
/RespL(0, 0)

) Load(cep,lda,m,nt,s1,ml,hl;h2l)
® Init , Load?
[valid(cep) A Extk (s1)=cep:Ida:im::nt L
A Exty, (ml)=cep:nt:lda:m:sl:hcge::hl::h20]

s2:=Signg, (cep:nt::sl:hl) sS::SignKl_l(cep::lda::m::nt::hc)
hca:=H ash(Ida::cep::nt:ircay)  /ResplL(s2,s5)

Comp(cep,lda,m,nt,r2l,s3)
/\Log(cep,lda,m,nt,r' ,ml,r2l)

®

Fig. 5.20. Repaired load transaction: card issuer
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[Extk,, (s2")=cep::nt::sL::hl”

Clog(lda’,m’ ,nt,s2" rl")

C:Card

L:LSAM I:Issuer

Init(Ida,m,) j

Respl(cep,nt,s1,hcae)

Load(cep’,Ida,mn,nt’,s1",mla,hls,h215)

[valid(cep)A
Extre, (s1"”)=cep”:lda":m" :int” A
Extk, (ml")=cep”::nt"::da" ::m"::

RespL(s2, s5)

Credit(s2',rly) 7 ;
[s2#0 A Extk, (sb)=cep::lda::mq::nt::hc]

Arl'£0]

(Ida’, m") ::= Init
s1::=8igny  (cep::lda’=m’:nt)
hcne::=H ash (Ida"::cep:intiircay)
$3:=8igng ., (cep::lda::m’::nt)
(s2" ") ::= Credit

hl"::=H ash(Ida"::cep::ntz:rl’)

|

| -~

| s1":thcny:hl’:h2l']
|

|

|

RespC(s3,rcnt)
Comp(cep’,Ida,mp,nt’,0,s3’
[rc’=0V P(cep " )
hc#Hash (Ida::cep::nt::rc’))]
Llog(cep’,mn,nt,0,s5) ILog(cep”,Ida”,m" ;nt,ml,0)
|
s2' ::= RespL; (cep”,Ida” ,m"” ;nt" s1"” )ml’ hI' h2l") ::= Load
(s3',rc’) ::= RespC r':=Deck,,(R)
(cep’,nt’,s1’,hc’) ::= Respl $2:=8igng  (cep”:nt”::s1"::hl’)
hln::=H ash(Ida::cep’::nt’::rl) hcne:=Hash(Ida"::cep::int”:ircnt)
h2l.::=Hash(lda::cep’:: nt'::r2l, s5::=Sign, —1(cep”::lda”::m” :nt” :hc’
p g K] P

mln::=Sign, -1 (cep’::nt’::Ida::my::s1’:thc’ sl h21,)
L

Fig. 5.21. Sequence diagram for repaired load transaction
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We now discuss the security of the improved version of the protocol. Firstly,
we argue that the specification is a well-defined UMLsec specification in the
sense of Sect. 4.1.2.

Proposition 5.11. £’ provides secrecy of Kcy, K[l, K|_1 and integrity of Kcy,
K[l, Krl, cep, nt, rcy, Ida, n, rly, r2l,, m, (meaning that the adversary should
not be able to make the atttributes take on values previously known only to
him) against insider adversaries with K% N {Kc, K[ Kt} = 0.

We now consider the formalizations of the above security goals with re-
spect to the modified specification. They use the following two notational
definitions.

e Let K be the joint knowledge set of all participants except L: any object
in the classes Card or Issuer, any adversary (that is not able to penetrate
the smart card on which L resides, according to the threat scenario), and
any object in LSAM except L.

e Let i be the knowledge set of L.

Theorem 5.12. In the presence of adversaries of type A = insider with
KR N {Ke, KT K U {ree i nt € Ny U {rlg, 121, :n € N} =6

the following security guarantees are provided by L':

Cardholder security: For any message Clog(lda, m,nt,s2,rl) sent to c: CLog,
if m # 0 (that is, the card seems to have been loaded with m) then rl #0
and

Eatk (s2) = cep:nt::Signy, (cep::lda:im:nt)::
Hash(lda::cep::nt::rl)

holds (that is, the card issuer certifies rl to be a valid proof for the transac-
tion). For any two messages Clog(lda, m, nt,s2,rl) and Clog(lda’,m’, nt’,s2’,
rl') sent to c : CLog, we have nt # nt’.

Load acquirer security: Suppose that we have ml, € K and rl, € K where
ml, = S’iganl(cep::nt::lda::mn slay:chlyih2l,) with hl, = Hash(lda::
cep ::nt::rly) and h2l, = Hash(lda::cep::nt::r2l,), for some cep, nt, sl,
and y. Then at the end of an execution of L either of the following two
conditions hold:

e a message Llog(cep,lda, m,,nt,z) has been sent to | : LLog (which im-
plies that L has received and retains my in cash) or

e a message Llog(cep,lda,0,nt,z) has been sent to | : LLog, for some x
(that is, the load acquirer assumes that the load failed and returns the
amount m, to the cardholder), and we have z' € K and z € K with
z= ‘S‘ignKrl(cep::lda::mn unt::y') where y' = Hash(lda::cep::nt::z')
=y (that is, the load acquirer can prove that the load was aborted).
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Card issuer security: For each message Clog(lda, m,nt,s2,rl) sent to c : CLog,
if m#0 and

Eatk, (s2) = cep:nt::Signg, (cep::lda:im:nt)::
Hash(lda::cep::nt::rl)

holds for some lda, then the card issuer has a valid signature ml, corre-
sponding to this transaction.

We had to change the condition of load acquirer security slightly to accommo-
date the changes in the protocol. To see that it is formalized in an adequate
way, note that a value ml, = Sz'gnKL_l(cep::nt::Ida::mn islihe:hlyh2ly) is
known outside L only after the load acquirer has received the amount m, in
cash. This follows from the facts that a protocol at L is started only after the
cash is inserted, that ml, is signed with the key Kfl, and that this key is only
accessible to L by Proposition 5.11. Thus the critical question is whether the
cash is returned to the cardholder after rl, becomes known outside L. Accord-
ing to the specification of L this may happen only after a message of the form
Llog(cep, 0, nt, rc) is sent to | : LLog.

5.4 Developing Secure Java Programs

Dynamic access control mechanisms such as those provided by Java since the
JDK 1.2 Security Architecture [Gon99, Kar00] in the form of GuardedObjects
can be difficult to administer since it is easy to forget an access check
[Gon98, BV99]. If the appropriate access controls are not performed, the se-
curity of the entire system may be compromised. Additionally, access control
may be granted indirectly and unintentionally by granting access to an object
containing the signature key that enables access to another object. We show
how to use UMLsec to address these problems by providing means of rea-
soning about the correct deployment of security mechanisms such as guarded
objects.

After presenting some background on access control in Java in the following
subsection, we outline the part of a design process relevant to enforcing access
control in Java and give some results on verifying access control requirements.
In Sect. 5.4.3 we illustrate our approach with the example of the development
of a web-based financial application from formal specifications.

5.4.1 Access Control in Java

Authorization or access control is one of the cornerstones of computer secu-
rity [SS94]. The objective is to determine whether the source of a request
is authorized to be granted the request. Distributed systems offer additional
challenges. The trusted computing bases (TCBs) may be in various locations
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and under different controls. Communication is in the presence of possible
adversaries. Mobile code is employed that is possibly malicious. Further com-
plications arise from the need for delegation, meaning that entities may act
on behalf of other entities. Also, many security requirements are location-
dependent. For example, a user may have more rights at the office terminal
than when logging on from home.

In the JDK 1.0 Security Architecture, the challenges posed by mobile code
were addressed by letting code from remote locations execute within a sandboz
offering strong limitations on its execution. However, this model turned out
to be too simplistic and restrictive.

From JDK 1.2, a more fine-grained security architecture is employed which
offers a user-definable access control, and the sophisticated concept of guarded
objects [Gon99, Kar00]. Permissions are granted to protection domains. A
protection domain [SST5] is a set of entities accessible by a principal. In the
JDK 1.2, protection domains consist of classes and objects. They are specified
depending on the origin of the code, as given by a URL, and on the key with
which the code may be signed. The system security policy set by the user or a
system administrator is represented by a policy object instantiated from the
class java.security.Policy. The security policy maps protection domains to sets
of access permissions given to the code.

There is a hierarchy of typed and parameterized access permissions, of
which the root class is java.security.Permission and other permissions are sub-
classed either from the root class or one of its subclasses. Permissions consist of
a target and an action. For file access permissions in the class FilePermission,
the targets can be directories or files, and the actions include read, write,
execute, and delete.

An access permission is granted if all callers in the current thread history
belong to domains that have been granted the said permission. The history of
a thread includes all classes on the current stack and also transitively inherits
all classes in its parent thread when the current thread is created.

The sophisticated JDK 1.2 access control mechanisms are not so easy to
use. The granting of permissions depends on the execution context. Some-
times, access control decisions rely on multiple threads. A thread may involve
several protection domains. Thus it is not always easy to see if a given class
will be granted a certain permission.

This complexity is increased by the mentioned guarded objects [Gon99].

If the supplier of a resource is not in the same thread as the consumer, and
the consumer thread cannot provide the access control context information,
one can use a GuardedObject to protect access to the resource. The supplier of
the resource creates an object representing the resource and a GuardedObject
containing the resource object, and then hands the GuardedObject to the con-
sumer. A specified Guard object incorporates checks that need to be met so
that the resource object can be obtained. For this, the Guard interface con-
tains the method checkGuard, taking an Object argument and performing the
checks. To grant access the Guard objects simply returns, to deny access it
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throws a SecurityException. GuardedObjects are a quite powerful access con-
trol mechanism. However, their use can be difficult to administer [Gon98].
For example, guard objects may check the signature on a class file. This way,
access to an object may be granted indirectly, and possibly unintentionally,
by giving access to another object containing the signature key for which the
corresponding signature provides access to the first object.

5.4.2 Design Process

We sketch the part of a design process for secure systems using UML that is
concerned with access control enforcement using guarded objects:

(1) Formulate the permission sets for access control of sensitive objects.

(2) Use statecharts to specify Guard objects that enforce appropriate access
control checks.

(3) Make sure that the Guard objects protect the sensitive objects sufficiently
in that they only grant access implied by the security requirements (by
making use of the tool support presented in Chap. 6.

(4) Ensure that the access control mechanisms are consistent with the func-
tionality required by the system in that the objects that depend on
guarded objects may perform their intended behavior, again by making
use of the tool support.

Here the access control requirements in step (1) can be of the following form:

e origin of requesting object (based on URL)
e signature of requesting object
e external variables (such as time of day)

In Sect. 5.4.3 we discuss a specification following these steps. They enforce
the following two requirements:

Security requirement: The access control requirements are strong enough to
prevent unauthorized influence, given the threat scenario arising from the
physical layer.

Functionality requirement: The access control requirements formulated are
not overly restrictive, denying legitimate access from other components of
the specification.

The functionality requirement is important since it is not always easy to see
if stated security requirements are at all implementable. If their inconsistency
is only noticed during implementation then, firstly, resources are wasted since
work has to be redone. Secondly, most likely security will be degraded in order
to reduce this extra work.

Before coming to the main example in the next subsection, we give a short
example to point out that the kind of weaknesses in using the Java security
access control mechanisms can be quite subtle, beyond just mistakenly sending
out secret keys or forgetting to set access rules.
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cert
0 recMaster

/return(K, Signyg—1(grd, K))!

mst(key, cert)
[fst(Extke, (cert)) = req]
/K = Entsna ety (cer)) (Deck-1(key))

checkGuard(sig)
waitReq

[:
checkReq
sign(skey)

sig = K et
[ g 5] /r urn /KS = DeCKM (Skey)

Fig. 5.22. Guard object example

Ezample

The statechart in Fig. 5.22 describes the behavior of a guard object grd en-
forcing a slightly more complicated access control policy.

To facilitate understanding, we give a typical message exchange of this
access control mechanism to establish Ks in Fig. 5.23. In the envisioned situ-
ation, there is an object req used to grant to other objects the right to access
a particular guarded object by signing the class files with a key Ks. There
should be a possibility to update the key Ks: by substituting Ks with a differ-
ent key Kg it can be achieved that an object the class file of which is signed
by Ks is no longer allowed access to the guarded object. Thus the object req
needs to be able to submit the current signing key Ks to the guard object. For
this, first a shared key Ky is established using the public key K of the guard
object, which is used to encrypt the submitted key Ks. This is more secure and
more efficient than directly using K, if Ks is updated rather frequently. The

cert()
grd req

return(K, Signy—1(grd, K))
grd req

mst({SignKr1 (Km) }k, SignKEAl (req, Kr))
grd req

sign({Ks }xu)
grd req

Fig. 5.23. Guard object message exchange
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identity of req is taken as given and is bound to a public key in the certificate
cert signed with the key Kca of a certification authority. On request cert(),
the guard object sends out a self-signed certificate certifying its public key
K. The object req sends back the symmetric key Ky signed with its private
key corresponding to the public key in cert and encrypted under K, together
with the certificate cert. We recall from Sect. 3.3.3 that the functions fst and
snd applied to a pair return their first and second components, respectively.
The guard object can receive the signature key Ks encrypted under Ky and
will then grant access to those objects in class files signed by Ks. We assume
that the guard object is given the signature of the requesting object using the
method checkGuard().

Note that here we do not focus on the exception processing mechanism.
Thus a guard object that does not grant access simply does not return. Also,
for simplicity we assume that the guard object receives the key sig with which
the requesting applet was signed as the argument of the operation checkGuard,
and that the execution context of the applet checks that it was actually signed
with this key.

This access control mechanism, which for the sake of the example is derived
from the protocol in Sect. 5.2, contains a flaw analogous to the one pointed
out there: an adversary A intercepting the communication between req and
grd, and modifying the exchanged values, can find out Ky and thus make
grd accept a key Kg chosen by A. The critical part of the message exchange
corresponding to this attack is given in Fig. 5.24. Here the intended access
control policy is not enforced since the preservation of secrecy of the signing
key Ks is violated in a subtle way. With our approach one can exhibit subtle
flaws like this using the tool support provided for UMLsec.

return(K,Sign, 1 (grd,K)) return(K 4 ’SZganl (grd:K4))

grd A req
mst({Sign, —1(Km)}k,Sign, —1(req,K:)) mst({Sign, —1(Km)}k 4 Sign,—1(req,Kr))
grd CA A CA req

Fig. 5.24. Guard object security flaw

5.4.3 Example: Financial Application

We illustrate our approach with the example of a web-based financial applica-
tion. Although highly simplified, the example points out some typical issues
when considering access control for web-based e-commerce applications: to
have several entities, such as service providers and customers, interacting with
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www.bankeasy.com

Local Server
<<Internet>>
Browser T
N
Sl | <<rmi>>
Store Tl -
<<rmi>> ~~.| www.finance.com

Server

<<Internet>>

Fig. 5.25. Financial application specification: Architecture

each other while granting the other parties a limited amount of trust and by
enforcing this using credentials. Since we would only like to illustrate the gen-
eral idea, we only give parts of a system specification, rather than a complete
UML subsystem. We show in UML diagrams how to employ GuardedObjects
to enforce these security requirements. We argue that the specification given
by the UML diagrams is secure in that it does not grant any access not implied
by the security requirements. Again, this security analysis can be performed
using the UMLsec tool support.

Two institutions offer services over the Internet to local users: an Internet
bank, Bankeasy, and a financial advisor, Finance. The overall architecture
of this system is given in Fig. 5.25, where «rmi» represents remote method
invocations.

To make use of these services, a local client needs to grant the applets
from the respective sites certain privileges:

(1) Applets that are signed by the bank can read and write the financial data
stored in the local database, but only between 1pm and 2pm (when the
user usually manages his or her bank account).

(2) Applets (for example, from the financial advisor) can access an excerpt of
the local financial data to give the user advice on stock purchases. Since
these applets also need access to the Internet to obtain stock information,
but the financial information is not supposed to leave the local system,
they have to be signed by a certification company, CertiFlow, certifying
that they do not leak out information.

(3) Applets signed by the financial advisor may use the micropayment signa-
ture key of the local user (to purchase stock rate information on behalf of
the user), but this access should only be granted five times a week.

Financial data sent over the Internet is encrypted to ensure integrity and
confidentiality. Access to the local financial data is realized using Guarded-
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Objects. We thus concentrate on the specification of the local system given in
Fig. 5.26.

Local «guarded access» -
getObject(Exp,Exp):Exp JavaSecArch:

i ' bj=FinE
StoFi.Write(arg:Exp) /return(FinEx)

tObj(obj,si
FinEx.Read():Exp getObi(ebi sig)

MicSi.Sign(req:Exp):Exp

/return(MicSi) /MicGd.chkGd(sig)

return
MGdReturn?

[obj=MicSi]

[obj=StoFi]  /FinGd.chkGad(sig)

JavaSecArch call MicGd
fffffff = limit: Bool
chkGd() “ecalls | chkGd()
«call» v ! «call» T «call
FinGd <<ca||>: ExcGd
slot: Bool
chkGd() chkGd()
«guarded» «guarded» «guarded»
StoFi  {guard=FinGd} «call» | FINEX {guard=ExcGd} MicSi  {guard=MicGd}
FinData: Exp - ExcData: Exp MicroKey: Keys
Read():Exp . ; . .
Write(arg:Exp) Read():Exp Sign(req:Exp):Exp
ExcGd: chkGd(sig)

[sig=cert]/return

FinGd:
chkGd( S|g MicGd: chkGd(sig)
[sig=bank » slot=true] /return [sig=finan A limit=true] /return

Fig. 5.26. Financial application specification: Local system

We only give a partial specification, containing the simplified relevant part
of the Java Security Architecture which receives requests for object references
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and forwards them to the guard objects of the three guarded objects. We omit
the behavior of the guarded objects, and also the activity diagram which would
include their behavior, and the deployment diagram. The access controls are
realized by the Guard objects FinGd, ExpGd, and MicGd, whose behavior is
specified. We assume that the condition slot is fulfilled if and only if the time
is between 1pm and 2pm, and that the condition limit is fulfilled if and only
if the access to the micropayment key has been granted less than five times in
the current calendar week. Here we assume that the execution context of an
applet checks that the applet was actually signed by the authority sig whose
name is given as the second argument to getObj, and again we do not model
exception processing. In accordance with the UMLsec profile in Chap. 4, we
assume that the names of the objects that are stereotyped « guarded » are not
in K% and thus not initially known to the adversary. In this way we model
the passing of references in the Java 2 Security Architecture.

Now according to step (3) in Sect. 5.4.2, one may convince oneself that
the guard objects sufficiently protect the guarded objects, as required by the
access control requirements stated above. We omit the formal treatment. Note
that one might also formalize these requirements using first-order logic and
then use the UMLsec tool support to make sure that any access granted by
one of the guard objects is legitimate in the sense that it may be derived from
the original formalization in the logic. In this way our approach helps to bridge
the gap between formal security policy models and system specifications.

Regarding step (4) in Sect. 5.4.2, one may also convince oneself that any
legitimate access according to the above requirements is granted, again, using
the tool support.

5.5 Further Applications

We give some examples for further applications of our Model-based Security
Engineering approach.

5.5.1 Modeling and Verification of a Bank Application

In a project with a major German bank [GHJW03], we have applied our ideas
about model-based development of security-critical systems to a web-based
banking application, by making use of the CASE tool AutoFocus [SH99],
which has a UML-like notation.

The application can be used by clients to fill out and sign digital order
forms. The main security requirements of this application are that the per-
sonal data in the forms must be kept confidential, and that orders cannot be
submitted in the name of others.

For this purpose, when the user logs in, first an authentication protocol
is run and an encrypted connection is established. The second part of the
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Fig. 5.27. Authentication protocol

transaction (filling out and digitally signing the order form) is carried out
over this connection.

The authentication protocol is based on an underlying SSL connection
layer which is initially established and which is supposed to provide a secure
connection with regard to confidentiality and server authentication. The ses-
sion key generated during the SSL handshake is used to encrypt the messages
of the authentication protocol on the second layer. The protocol authenticates
the client by making use of a cardreader and a smart card to compute digital
signatures on the client’s side. There is a need for a layered protocol here
because the SSL client authentication feature cannot be used due to technical
restrictions imposed by the architecture of the bank system (the web server
does not support the forwarding of client certificates).

The complete protocol run is shown in Fig. 5.27. After the ClientHello
message, a nonce (a randomly generated number) is sent by the web server.
The client signs this nonce with his or her own private key and sends it
together with his or her certificate back to the web server. The certificate
contains the client’s identity, a global identification number which references
the client’s data on the backend, and the client’s public key. The web server
checks the signature of the nonce and compares the received nonce with the
one sent before. Furthermore a plausibility check of the global ID will be done
and it will be saved for later purposes. The authentication is finished after
the checks have been successful. The web server now sends the global ID and
an empty form to the backend system, where it is filled with the client’s data
and sent back to the client. The global ID is also stored on the backend.
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The client signs his or her data with his or her private key, thus creating an
electronic signature. The backend checks the signature of the received data
object and the certificate. The received global ID and the signed data object
are compared with the ones stored. On success an order is generated and
an acknowledgment is sent to the client. The end of connection signal can be
caused by a timeout or a logout event.

In [GHIWO03], the system architecture and the protocol are specified using
the tool AuTOFOCUS in a notation which is very similar to UML deployment
diagrams and UML statecharts (see there for the details). This model is then
verified with regard to the relevant security requirements. For this purpose,
the tool AUTOFOCUS generates an input file for the symbolic model checker
SMV [McM93] which carries out the actual model checking process. Also, the
required security properties are translated into the SM'V language as well, and
during the model checking process, SMV checks whether they are true with
respect to the model (including both the modeled protocol and the adver-
sary model). If SMV finds any flaw in the protocol, this counter-example is
translated by the tool AUTOFOCUS into a notation similar to UML sequence
diagrams, which helps to understand the way the protocol can be attacked.
More details can be found in [GHIJWO03].

5.5.2 Biometric Authentication System

In the context of the Verisoft project [Ver03] funded by the German Fed-
eral Ministry of Research (BMBF), UMLsec is used for the development and
security analysis of a smart-card-based biometric authentication system to-
gether with a major German telecommunications company. In this system,
a biometric reference template stored on a smart card is compared with the
data provided by the biometric sensor. If the two match, the user is authen-
ticated. Because the communication links between sensor, host system and
smart card are vulnerable, they have to be protected using a cryptographic
protocol. Since the secure development of such a system is difficult, UMLsec is
used to specify the system and then to perform an automatic security analysis
using the tool support presented in Chap. 6.

While the system is still in development and the security analysis in
progress at the time of writing, the UMLsec based approach has already made
itself indispensable by detecting a security weakness which would have allowed
an adversary to circumvent a misuse counter designed to prevent brute force
attacks. The weakness has been removed and it is planned to implement the
authentication system using code generation from the UMLsec specification.

5.5.3 Automotive Emergency Application

Also in the context of the Verisoft project mentioned above, an Automotive
emergeny application is being developed together with a major German car
manufacturer which in the case of an accident should automatically contact
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a central server over a wireless network. Since the data that is communicated
may include information related to the cause of the accident raising questions
of liability, the communication has to be secured against adversaries trying
to manipulate this data or trying to breach its confidentiality. Therefore, we
also use UMLsec in this context to help constructing a reliable system.

5.5.4 German Electronic Health Card

At the time of writing, the German Federal Ministry of Health and Social
Security (BMGS) is currently developing an Electronic Health Card (Gesund-
heitskarte) [eHe03]. It is supposed to be issued until 2006 to all people insured
by the public health insurance system, which is the vast majority of the 80
million Germans. It will be designed to support, besides administrative func-
tions such as the handling of electronic prescriptions, also the storage of health
data. Therefore it is implemented on a smart card that can perform crypto-
graphic authentication, encryption and signatures. Part of the card is planned
to be interoperable on a European level. Evidently, data integrity and protec-
tion is vital for such a system. Because of its sheer size and complexity and
the tight time-frame, designing such a system securely is a very ambitious
task. We currently try to assist this endeavor by performing a UMLsec based
security analysis of the available specifications.

5.5.5 Electronic Purse for the Oktoberfest

In a further industrial application of the UMLsec methodology, we are cur-
rently investigating an electronic purse system in development for the Okto-
berfest in Munich, one of the largest festivals in the world. While similar in its
goals to the CEPS presented in Sect. 5.3, it is implemented in a proprietary
design. As an additional challenge for its security, the communication between
smart card and card reader is supposed to be wireless, facilitating attempts to
attack this communication channel. A security analysis of the security-critical
parts of the system using UMLsec and its tool support is in progress.

5.5.6 Electronic Signature Architecture in Insurance Companies

A large German insurance company is currently investigating the possibilities
of using electronic signature pads to allow a completely paperless signing and
processing of contracts by its clients and within the company. Here, UMLsec is
used to describe possible technical and architectural variants of such a system
and to perform a security analysis and risk assessment using the UMLsec
tools. Based on these results, a decision will be reached if and how such a
system should be implemented.
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5.6 Notes

The material from Sections 5.1 and 5.2 has been presented, in a different
formal model, in [Jiir01g]. Related work for Sect. 5.1 includes [AFGO02]. The
work shows how to translate a specification language related to the pi-calculus
but including secure channel abstractions into a lower-level language that
includes cryptographic primitives. Communication on secure channels is thus
mapped to encrypted communication on public channels. Correctness results
for this translation imply that it is safe to reason on the more abstract level.
An example for research related to Sect. 5.2 is the verification of the TLS
protocol using the interactive theorem prover Isabelle [NPWO02] in [Pau98a].
One should emphasize, however, that the protocol investigated in Sect. 5.2 is
a variant of TLS proposed in [APS99]. To our knowlegde, this variant has not
been otherwise formally analyzed.

Part of the research in Sect. 5.3 was reported in [JWO01b, JirOle, Jir04c|,
where [JWO1b] uses the AuToFocus CASE tool [HMR™98] which uses a
notation very similar to UML. This work was extended in [JW01la] beyond
specification-based analysis to security testing of the CEPS by automatically
deriving test-sequences from the specification. More on this can be found in
Sect. 6.4.1. Related to Sect. 5.3, information on smart cards is gathered in
[RE00]. An overview of electronic payment systems is given in [AJSWO00].
Smart card protocols have been investigated using formal logic in [ABKL93].
Smart card payment systems are analyzed using formal methods in [And99,
SCWO00].

The approach in Sect. 5.4 has been discussed in [JiirOlh]. In a similar
vain, [Jiir02e] shows how to use UMLsec for developing secure CORBA appli-
cations. Related to the research in Sect. 5.4, Java2 security and in particular
the advanced topics of signed, sealed, and guarded objects is explained in
[Gon99]. There has also been some work giving formal reference models for
Java2 access control mechanisms, thus clarifying possible ambiguities in the
informal accounts and enabling proof of compiler conformance to the specifica-
tion [KG98, WF98, Kar00] (but without considering signed, sealed, or guarded
objects). To our knowledge, the secure use of signed, sealed, or guarded ob-
jects in JDK 1.2 has so far not otherwise been considered in a formally based
approach.

5.7 Discussion

We gave examples of secure systems development using UMLsec. We exempli-
fied stepwise formal development of a security-critical system by considering
a secure channel design. We uncovered a flaw in a variant of the handshake
protocol of the Internet protocol TLS proposed in [APS99], suggested a cor-
rection, and verified the corrected protocol. We examined the Common Elec-
tronic Purse Specifications, discovered flaws in the two central parts of the
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specifications, proposed corrections, and gave a verification. We demonstrated
how to use UMLsec for formal development of security-critical Java systems.

These case studies demonstrate the adequacy of the UMLsec definition for
modeling and verifying secure systems. With the CEP specifications in partic-
ular, we presented an industrial application of realistic size and complexity to
demonstrate that the use of UMLsec is not restricted to the kind of compact
core cryptographic protocols often considered in the academic formal methods
in security literature.

Necessarily, this complexity is reflected in the CEP specifications in so far
as it is relevant to the security analysis, for example with respect to the cryp-
tographic data included in the diagrams. One should note, however, that the
use of a graphical specification language such as UML helps mastering this
complexity. Although a two-page UML diagram with lots of cryptographic
expressions may look daunting at first sight, it is considerably more quickly
accessible than the 500 pages of textual specifications in [CEP01], and even
more so when compared to what a logical formula equivalent to the UML
model would look like. Using a graphical specification language has the ad-
vantage of providing a quick overview of the physical and logical structure of
the system that is modeled, while all the needed technical details are there
as well. That security practitioners are already starting to realize this can be
inferred from the fact that many industrial specifications today already make
use of UML like notations, although still in an often fragmentary and not
fully coherent way. It should be hoped that the level of precision and detail
can be raised by providing a general framework which provides a payoff for
the increased effort, in particular by providing the kind of tool support for
automated security analysis which we present in Chap. 6.

In all, our experience with using UMLsec in industrial application projects
indicates that its use has the potential for significantly improving the security
of systems in development or already existing.
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Tool support for UMLsec

For the ideas that were presented in the previous chapters to be of benefit
in practice, it is important to have advanced tool support to assist in using
them. In this chapter, we present the necessary background and some results
achieved so far toward developing tool support for UMLsec. The developed
tools can be used to check the constraints associated with UMLsec stereo-
types mechanically, based on XMI output of the diagrams from the UML
drawing tool in use. We also explain a framework for implementing verifi-
cation routines for the constraints associated with the UMLsec stereotypes.
The goal is that advanced users of the UMLsec approach should be able to
use this framework to implement verification routines for the constraints of
self-defined stereotypes.

Furthermore, we present research on linking the UMLsec approach with
the automated analysis of security-critical data arising at runtime. Specifi-
cally, we present research on the construction of a tool which automatically
checks the SAP R/3 configuration for security policy rules formulated as UML
specifications. Because of its modular architecture and its standardized inter-
faces, the tool can be adapted to check security constraints in other kinds of
application software, such as firewalls or other access control configurations.

Finally, we present some approaches for linking UML models to implemen-
tations. The aim is to ensure that the benefits gained from the model-based
approach on the level of the system model actually carry over to the imple-
mented system, as one would hope.

6.1 Extending UML CASE Tools with Analysis Tools

We present some background useful for constructing tool support for XMI-
based analysis of UML models. In the first subsection, we explain how the
syntax of UML diagrams is defined on a technical level using the Meta-Object
Facility (MOF) and how the data contained in UML diagrams can be saved
using the XML Metadata Interchange (XMI) format. In the second subsection,
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we explain how one can conveniently access the information stored in an XMI
file.

6.1.1 Meta-Object Facility (MOF)

Early tool support for processing UML models had to rely on storage formats
of the various UML tools which made exchange and reuse of the models and
tools impossible. Having chosen a UML tool, the developer was tied to using
it through the whole project. Applying emerging technologies to the UML
modeling on the industrial level was virtually impossible. To suggest any cus-
tom UML processing, one would have to develop a complete UML editor and
persuade the developers to use it.

The development of XML as a universal data storage format changed this
situation. In the year 2000, the Object Management Group (OMG) issued the
first specification for the XML Metadata Interchange (XMI) language [XMI02]
which became a standard for exchanging UML models between tools. The
XMI language again is compliant with MOF [MOF02]. MOF is a standard
defining an abstract language and a framework for specifying, constructing
and managing modeling languages, also called meta-models, such as UML and
CWM (Common Warehouse Model). It allows software systems to be modeled
particularly flexibly in an approach based on several layers of information. The
differenz meta-levels are displayed in Fig. 6.1.

Initially it was developed to define CORBA-based services for managing
meta-information. Currently, its applications include the definition of model-
ing languages such as UML and CWM.

We explain the different MOF layers at the hand of an example in Fig. 6.2.
The lowest level MO deals with the data instances, for example “Bob Marley”,
“Kingston”. The level M1 describes data models, in software development this
corresponds to the UML model of the application. An example for this layer is
a Person with attribute City. The next abstraction level M2 is the modeling
language itself. There exist different modeling languages for different applica-
tion domains, and the last abstraction level M3 is the common environment

MOF Model | M3

UML Meta Model M2

UML Model (structure) M1

Information (instance) MO

Fig. 6.1. MOF framework: meta-levels
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Fig. 6.2. MOF framework: example

for defining these modeling languages, standardized by the MOF. The MOF
makes use of the following three concepts:

MOF objects define object types for the target model. The information asso-
ciated with an MOF object includes a name, a set of attributes, a set of
operations, a set of association references, and a set of supertypes it inher-
its. The MOF object is a container for its component features, namely its
its attributes, operations, and association references. It may also contain
MOF definitions of data types and exceptions.

MOF associations define links between two MOF objects. These links are
always binary and directed. A link is a container for two association ends,
each representing one object which the link is connected to.

MOF packages group related MOF elements for reuse and modularization.
An MOF package is defined by a name, a list of imports consisting of
other MOF packages whose components may be reused, a list of supertypes
which defines a set of other MOF packages whose components form a part
of the package, and a set of contained elements including other objects,
associations, and packages.

The MOF also defines the following secondary elements:

Data types can be used to define constructed and reference data types.
Constants define compile-time constant expressions.

Exceptions can be raised by object operations.

Constraints can be attached to other MOF elements. Constraint semantics
and verification are not part of the MOF specification, and therefore they
can be defined with any language.

The MOF is related to two other standards:

XML Metadata Interchange (XMI) is a mapping from MOF to XML. It can
be used to automatically produce an XML interchange format for any lan-
guage described with MOF. For example, to produce a standardized UML
interchange format, we need to define the UML language using MOF, and
use the XMI mapping rules to derive DTDs and XML Schemas for UML
serialization. The MOF itself is defined using MOF, and therefore XMI
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can be applied not only for meta-model instances, but for meta-models
themselves: They are also instances of a meta-model, which is a MOF
model.

The Java Metadata Interface (JMI) standard defines a MOF-to-Java map-
ping, similarly to the MOF-to-XML mapping provided by XMI. It is used
to derive Java interfaces tailored for accessing instances of a particular
meta-model. As MOF itself is MOF-compliant, it can be used to access
meta-models as well. The standard also defines a set of reflective interfaces
that can be used similarly to the meta-model-specific API without prior
knowledge of the meta-model.

Today, many UML editors support model interchange in the XMI format.
Together with the wide support for the XML language, including a broad
range of libraries, editors, and accompanying technologies, this enables devel-
opment of lightweight UML processing tools.

6.1.2 XML-Based Data-Binding with MDR

There exist at least three technologies for processing XMI files:

e Common high-level languages with appropriate libraries for parsing XML
files (such as Java, C++, and Perl).

e Specialized XML parsing and transformation languages (such as XPath
and XSLT).

e XMI data-binding, where a framework extracts the data from an XMI file,
which can then be accessed for example through a Java method.

The first two methods, although flexible, require some effort related to
parsing the XMI file. This suggests trying to use XMI data-binding for our
purposes. There exist libraries supporting data-binding for the more general
case of XML, such as the widely used Castor library [Cas03]. However, there
exist XMI-specific data-binding libraries which directly provide a represen-
tation of an XMI file on the abstraction level of a UML model. This allows
the developer to operate directly with UML concepts, such as classes, state-
charts, and stereotypes. For UMLsec tool support, we use the MDR (Meta-
Data Repository) library which is part of the Netbeans project [Net03] and
also used by the freely available UML modeling tool Poseidon 1.6 Commu-
nity Edition [Gen03]. Another such library is the Novosoft NSUML project
[NSUO03].

The MDR library implements an MOF repository with support for XMI
and JMI standards. Figure 6.3 illustrates how the repository is used for work-
ing with UML models.

In step 1, the XMI description of the modeling language is used to cus-
tomize the MDR for working with a particular model type, which is UML in
this case. The XMI description of UML 1.5 is published by the Object Man-
agement Group (OMG). A storage customized for the given model type is
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Fig. 6.3. Using the MDR library

created in step 2. Additionally, based on the XMI specification of the model-
ing language, the MDR library creates the JMI implementation for accessing
the model in step 3. This allows the application to manipulate the model di-
rectly on the conceptual level of UML. In step 4, the UML model is loaded into
the repository. Now it can be accessed through the supplied JMI interfaces
from a Java application. The model can be read, modified, and later saved in
an XMI file again.

Because of the additional abstraction level implemented by the MDR li-
brary, using it in the UMLsec tool is hoped to facilitate upgrading to upcoming
UML versions, and promises a high-standard compatibility.

6.2 Automated Tools for UMLsec

This section presents research on tool support for the automated analysis of
UMLsec models with regard to security requirements currently under devel-
opment at TU Munich and available at [JSA104].

6.2.1 Tool Functionality

There are several possible degrees of functionality in the verification of
UMLsec models, depending on which of the stereotypes in Sect. 4.1.2 should
be verified:
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Static features: The tool should be able to verify security properties in-
cluded as stereotypes in the structure and deployment diagrams, such
as «secure links» and « secure dependency ».

Simple dynamic features: The model behavior, described by the statechart
and sequence diagrams, is analyzed to verify basic security requirement,
defined on the behavioral level (such as «fair exchange »).

Complex dynamic features: The UMLsec model describing dynamic behavior
is translated into the input language of an analysis tool (such as a temporal
logic formula in the case of a model-checker). It can thus be verified against
even subtle dynamic properties, such as « data security ».

External application binding It would be desirable to have the possibility to
connect to the UMLsec tool framework external applications that may
provide data to be analyzed together with the UML models, such as secu-
rity permissions from configurations for SAP R/3 business applications.

The following aspects have to be considered when trying to construct tool
support for secure systems development with UML following the UMLsec
approach.

To be able to apply verification tools, such as model-checkers or auto-
mated theorem provers, one needs a front-end which automatically produces
a semantic model and includes the relevant formalized security requirements,
when given a UMLsec model. This avoids requiring the software developers
themselves to perform this formalization, which usually needs a high level of
specialized training in formal methods. UMLsec supports this approach by of-
fering predefined security primitives with a strictly defined semantics, which
can be applied by a developer who may not be expert in security by including
the relevant stereotypes in the UML model. These primitives are translated
into the targeted formal language, protecting from potential errors in manual
formalization of the security properties. See Chap. 7 for a definition of the for-
mal language used for UMLsec and the formalization of the security primitives
and Chap. 8 for the formal semantics of the (restricted and simplified) frag-
ment of UML used. Since security requirements are usually defined relative to
an adversary, to analyze whether the UML specification fulfills a security re-
quirement, the tool support has to automatically include the adversary model
arising from the physical view contained in the UML specification.

The architecture and basic functionality of the UMLsec analysis suite are
illustrated in Fig. 6.4. The overall architecture is divided between the UML
drawing tool in use and the analysis suite. This way the analysis suite can
be offered as a web application, where the users use their drawing tools to
construct the UML model which is then uploaded to the analysis suite. Ad-
ditionally, a locally installable version is available (as a prototype at the time
of writing). Plugins for various UML drawing tools are also planned.

The usage of the analysis suite as illustrated in Fig. 6.4 proceeds as fol-
lows. The developer creates a model and stores it in the UML 1.5/XMI 1.2
file format. The file is imported by the UMLsec tool into the internal MDR,
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Fig. 6.4. UML tools suite

repository. The tool accesses the model through the JMI interfaces generated
by the MDR library. The static checker parses the model, verifies its static
features, and delivers the results to the error analyzer. The dynamic checker
translates the relevant fragments of the UML model into the model-checker in-
put language. The model-checker is spawned by the UML suite as an external
process. Its results, and a counter-example in case a problem was found, are
delivered back to the error analyzer. The error analyzer uses the information
received from both the static checker and dynamic checker to produce a text
report for the developer describing the problems found, and a modified UML
model, where the found errors are visualized and, as far as possible, corrected.

6.2.2 Implementation Details

We now explain a framework for implementing verification routines for the
constraints associated with the UMLsec stereotypes. The goal is that ad-



140 6 Tool support for UMLsec

vanced users of the UMLsec approach should be able to use this framework to
implement verification routines for the constraints of self-defined stereotypes.
In particular, the framework includes the UMLsec tool web interface, so that
new routines are also accessible over this interface.

The idea behind the framework is thus to provide a common programming
framework for the developers of different verification modules which in the
following we just call tools. Thus a tool developer should be able to concentrate
on the verification logic and not be required to become involved with the
input/output interface. Different tools implementing verification logic modules
can be independently developed and integrated. At the time of writing, there
exist verification modules for most UMLsec stereotypes.

An added tool implementation needs to obey the following assumptions:

e It is given a default UML model to operate on. It may load further models
if necessary.
The tool exposes a set of commands which it can execute.
Every single command is not interactive. They receive parameters, execute,
and deliver feedback.
The tool can have an internal state which is preserved between commands.
Each time the tool is called with a UML model, it may give back a text
report and also a UML model.

These assumptions were made in order for the framework to cover as much
common functionality as possible while not becoming overly complicated. Ex-
perience indicates that the assumptions are not too restrictive, given the ar-
chitecture in Fig. 6.4.

The tool architecture in Fig. 6.5 then allows the development of the ver-
ification logic independently of the input and output media with minimum

—

«framework» ——O |GuiMode

GuiWrapper
| )
\
\
«tool» * Q ITextMode
MyUmITool /
]
_| /
1
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WebWrapper

Fig. 6.5. Tool interfaces
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effort. Each tool is required to implement the ITextMode interface which ex-
poses tool functionality in text mode, with a string array as input and text
as output. The framework provides default wrappers for the graphical user
interface (GUI) GuiWrapper and the web mode WebWrapper. These wrappers
enable use of the tool without modifications in the GUI application which is
part of the framework, or through a web interface by rendering the output
text on the respective media. However, each tool may itself implement the
IGuiMode and/or IWebMode to fully exploit the functionality of the corre-
sponding media, for example to fully use GUI mode capabilities to display
graphical information.

At the time of writing, the UMLsec tools are working with the UML 1.5
version, which can be stored in an XMI 1.2 format [XMI02] by a number
of UML design tools.! In the next few subsections, we will shortly present
some examples for existing analysis plugins for the UMLsec tool framework.
In each, we have to omit the technical details but refer to the corresponding
articles that are listed in Sect. 6.5. Other examples for plugins include:

e a test-sequence generation for subsystems, sequence diagrams, activity di-
agrams, and statechart diagrams and
e a checker for the static security constraints in UMLsec.

6.2.3 Model-Checking UMLsec Specifications

We start with an analysis plug-in that utilizes the model-checker Spin [Hol03]
to automatically verify UMLsec models making use of cryptography for the
security requirements from Chap. 4 such as « data security ». This verification
is done with respect to the formal semantics presented in Chap. 8, and using
an adversary model arising from the physical security specification given in
the deployment diagram contained in the subsystem.

To check the constraint associated with « data security » attached to a sub-
system, we collect the security-relevant information from the class, statechart,
and deployment diagrams contained in the subsystem, such as the values of the
{secrecy} tags, which should remain secret. The behavior of the adversary is
modeled by a separate Spin process which is derived from the definition asso-
ciated with the deployment diagram using the threat sets from Chap. 4. Then,
for example, the security requirement expressed by the stereotype « secrecy »
is translated into a so-called never claim construct in the Spin code that says
that the adversary should never get to know the secret values. It defines a
process which runs in parallel with the rest of the Spin model and monitors
this property. As part of the verification process, Spin produces a trail file,
which records the sequence of actions of the potential attack. This information
can be used by the system developer to improve the protocol.

L An upgrade to UML 2.0 is in development.
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6.2.4 Automated Theorem Proving

We present a plugin for verifying UMLsec models that utilizes an automated
theorem prover (atp) for first-order predicate logic to verify security proper-
ties of UMLsec models which make use of cryptography. Compared with the
model-checking plugin, its advantage is a higher performance. The disadvan-
tage is that it is less easy to extract an attack trail for insecure specifications,
so the two plugins complement each other well.

The plugin translates a UML sequence diagram and an adversary model
automatically to first-order logic. That way, it constructs an upper bound for
the set of knowledge the adversary can gain which is represented by the pred-
icate knows. The resulting first-order logic formula written in the well-known
TPTP notation [SSO1] can then be processed by atp’s such as e-SETHEO
[MIL*97, SWO00, Sch01], SPASS [WBHT'02], Waldmeister [HBVL97], and
Vampire [RVO01]. From the first-order logic formulas generated from the UML
specification and the adversary model, the atp then tries to deduce whether
the security requirements may be violated. For example, if the value secret is
supposed to remain secret, the atp tries to deduce known(secret) from the pro-
tocol formulas. If this is possible, it means that there may be the possibility
for an attack. If not, the value remains secret.

Since the adversary knowledge set is approximated from above, the anal-
ysis is rather efficient. Note that it is a safe approximation in the sense that
one will find all possible attacks, but one may also encounter “false positives”,
although this rarely occurs.

6.2.5 Prolog-Based Attack Generation

Since the first-order logic formulas mentioned above are in fact Horn formu-
las, one can also evaluate them using Prolog. The difference to a verification
using atp’s is that Prolog uses a search algorithm over the valuations of the
variables, while the atp’s perform abstract derivations. Similarly to the model-
checking approach, the Prolog-based analysis has the disadvantage of being
less performant. However, it has the advantage that for insecure specifications,
attack models can be generated automatically.

6.3 Linking Models to Runtime Data: SAP R/3
Permissions

This section presents research on linking the UMLsec approach with the au-
tomated analysis of security-critical data arising at runtime.

Specifically, it presents research on the construction of a tool which auto-
matically checks the SAP R/3 configuration for security policy rules, such as
separation of duty [HJ03a]. The permissions are given as input in an XML for-
mat through an interface from the SAP R/3 system, the rules are formulated
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as UML specifications in a standard UML CASE tool and output as XMI as
part of the UMLsec framework explained in the previous section, and the tool
checks the permissions against the rules using an analyzer written in Prolog.
Because of its modular architecture and its standardized interfaces, the tool
can be adapted to check security constraints in other kinds of application
software, such as firewall, or other access control configurations.

Configuring user security permissions in standard business applications,
such as SAP R/3 systems, is difficult and error-prone. There are many exam-
ples of wrongly configured systems that are open to misuse by unauthorized
parties. To cmanually heck permission files of a realistic size in a medium
to large organization — which can consist of up to 60,000 entries — can be a
daunting task.

The management and configuration of security-related resources in stan-
dard business applications are important tasks. Potential threats include pub-
lic disclosure of confidential information but also direct financial loss. In up
to half the number of overall cases, the incidents are caused from within the
company [Ric03]. This demonstrates the importance of properly configuring
security permissions in business applications. It is important to realize that
the existence of security mechanisms itself does not provide any level of secu-
rity if they are not properly configured.

That this is actually the case is often clear to see. This applies especially to
the financial sector, where user permissions have to satisfy more complex cor-
rectness conditions. One example is the rule of “separation of duty”, meaning
that a certain transaction should only be performed jointly among two dis-
tinct employees, for example, granting a large loan. Difficulties arise firstly
from the inherent dynamics of permission assignment in real-life applications,
for example due to temporary delegation of permissions (for example, to vaca-
tion substitutes). Secondly, they arise from the sheer size of data that has to
be analyzed. In the situation of a large German bank, which the current work
had motivated, it consists of about 60,000 data entries. A manual analysis of
the security-critical configurations through system administrators on a daily
basis is thus practically impossible, and might result in security weaknesses
in practice. This observation motivated the current research which has been
initialized in a discussion with the above bank and its security consulting
partner. This resulted in a tool which automatically checks SAP R/3 config-
urations for security policy rules, such as separation of duty. This allows the
user of the tool to construct a link between general information of the system,
such as business processes specified in UML diagrams, to security-critical run
time information. This is very useful from a security viewpoint, since security
is an overall requirement which needs to take into consideration all aspects of
a system in an integrated way to avoid potential weaknesses at the interfaces
between different system parts.

The tool is part of the UMLsec framework explained in Sect. 6.2. The
permissions are given as input in an XML format through an interface from the
SAP R/3 system, the rules are formulated as UML specifications in a standard
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UML CASE tool and output as XMI, and the tool checks the permissions
against the rules using an analyzer written in Prolog. Because of its modular
architecture and its standardized interfaces, the tool can be adapted to check
security constraints in other kinds of application software, such as firewalls or
other access control configurations. In this section, we explain the design of
this tool.

6.3.1 Automated Analysis of Security Rules
The Goals

The tool is supposed to take a detailed description of the relevant data struc-
ture of the business application, the business data, and some rules written by
the administrator. Using this information, the tool checks whether the rules
hold for the given configuration. Violation of rules is included in the generated
security report. The tool should accomplish the following specific tasks:

It should read the configuration from the business application.

It should automatically generate a report of possible weaknesses.
It should provide a flexible configuration of the report’s data.

It should be easily configurable for different business applications.
It should be able to check large-scale databases.

The checking should be based on freely configurable rules.

Two other goals are particularly important to enable use of the tool beyond
the specific task of checking SAP permissions of the SAP installation at hand:
it has to be easy to integrate the tool with different business applications, and
the rules that have to be checked need to be very flexible. To make the tool
as flexible as possible and also as easy to use as one could, a modular design
is of great importance.

Architecture

The tool mainly consists of three parts displayed in Fig. 6.6. They store the
information describing the relevant data structure of the business application,
define the rules, and evaluate the rules. An additional part is needed to import
the data from the business application, such as the SAP system. This can be
the user data and some structural information about transactions.

The complete separation of the tool and the business application provides
additional security and privacy. Firstly, by separating the tool from the busi-
ness application, there is no way the tool could add any weaknesses to this
security-critical part of the company’s IT system. Secondly, in this way it can
be made sure that only the information needed for the analysis is exported
to the tool, which prevents andy unnecessary exposure of confidential data.
The information itself is completely stored in XML. The business applica-
tion’s data has to be exported to XML files. ing The data structure of the
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Data Executable

Business Application
Data

Business Application
Structure Analyzer

Rules

Fig. 6.6. Overview of the tool’s architecture

business application is defined by UML class diagrams. Any case tool capable
of saving XMI data according to the tool’s schema files can thus be used to
do the modeling. Rules are stored in XML as well. With all this information,
the tool can check the rules and create the report.

As an option, the report can use templates to generate the layout that
the user wants. To adapt the level of information to the given needs, every
rule has a “level of verbosity”. Then the rule is only evaluated if the report’s
desired “level of verbosity” is higher than the rule’s level.

The Business Application as a Model

Throughout the description of the analyzer there will be several types of
information that fit into different layers on OMG’s meta-model framework
explained in Sect. 6.1. In this framework there are UML models on layer 1
(M1) and application data on layer 0 (MO).

According to this separation of “model” and “information” the analyzer
needs two distinct types of data. First it needs “metadata” which is the de-
scription of the data structure of the business application itself and is given as
a UML model of the application. This is what is sometimes called the “struc-
ture of the business” application and it is on level M1. On the other hand, the
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analyzer needs to know about the data itself. This is what is called “instance
data” and it is information on level MO.

To illustrate the separation of data on layer M1 and data on layer MO
we consider an example. Assume there is “some” user data in the business
application. Every user has a name and a password. To formally describe the
meaning of “some” in the expression “some user data” there is a “model” that
tells the tool about the class user and its attribute name and password. This
is done with a UML model and is data on level M1. When the tool checks
the rules and needs to evaluate information of some special user, for example
“John”, it needs what is called “information” in the “meta-model framework”.
This information is called “instance data” and it is given as XML documents.

Permissions

To associate permissions for transactions via roles to users in role-based access
control (RBAC), the tool uses UML class diagrams. These diagrams can be
directly used to give this information, and we do not need to introduce any
additional features. The tool reads the class diagram and evaluates classes
and associations.

In general, the analyzer is not restricted to such an RBAC model or to any
specific model at all. It is capable of evaluating rules on any class diagram that
has the connection attributes assigned as names of the associations and the
direction of associations defined by the navigable flag. The analyzer evaluates
the model as a graph with classes as nodes and associations as edges, where
edges are directed. As we will see later, for the evaluation of rules, we need
to require that there must be a path between the two classes involved in that
rule, and there must be instance data so that the connecting attributes of
each class match.

To explain this in more detail, we consider the example in Fig. 6.7: the
class diagram assigning permissions to users consists of the classes user, role,
transaction, and permission, with attributes as in Fig. 6.7. There is an asso-
ciation role_id between user and role, an association role_id between role and
transaction, and an association transaction_id between transaction and permis-
sion. The analyzer uses this model to automatically find a user’s permissions.

Note that when assigning a permission p to a user u via a role r, and
the user u also happens to have another role r’, then it is not admissible
to conclude that any user u' with the role r' should also be granted the
permission p. In that sense, assigning permissions to users via roles is “uni-
directional”. In the class diagrams defining permissions, this is specified by
using the “navigable” flag of UML class diagrams. This flag is an attribute of
an association’s endpoint. If this flag is set to “true” at the endpoint of a class
¢, signified by an arrow at that side of the association, our rule-analyzer may
associate information from the other end of the association with c. If it is set
to “false”, this information may not be evaluated. In this way our tool may
gather the permissions with respect to transactions granted to a given user by
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user role
-name : String role_id -name : String
-role_id : int -role_id : int
role_id
transaction permission

-name : String -name : String
-role_id : int -role_id : int
-transaction_id : int -transaction_id : int

transaction_id

Fig. 6.7. Simple role-based access control

traversing the class diagram along the associations in the navigable directions
permitting a “flow of information”. Thus the tool “collects” all users that
have a given role, but does not recursively collect all users that have any of
the roles that a given user has, as explained above.

6.3.2 Instance Data

Besides the structural data elements explained above, we need so-called “in-
stance data”. Here an instance may, for example, be a real user of the system.
This information is important for most of the rules one would like to evaluate.
It is read by the analyzer from additional XML files containing a tag for every
class, and within that tag another tag for each attribute. An example is given
in Fig. 6.8. The analyzer is able to generate the XML Schema file for a UML
model specified by the user, because the contents of the instance file depend
on the model of the business application. With the generated XML Schema
file the analyzer is able to validate the input file.

Rules

As defined in the previous section, the business application data structure
is represented by a class diagram, that is a directed graph together with the
data from the business application. These two pieces make up a rather complex
graph whose structure can be seen in Fig. 6.9 as an example. One can see that
for every user in the business application data structure, a node is added. The
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<rubacon>

<user>
<name>john</name>
<uid>500</uid>
<group>users</group>

</user>

<group>
<group>users</group>

</group>

<rubacon>

Fig. 6.8. Snippet from an instance file

model gives the tool the information that there is a connection between “user”
and “role”, but in the graph in Fig. 6.9 there are only edges between certain
users and certain roles. It shows that there is an edge between user “john” and
role “users”, because there is the attribute “role” that instantiates it. There
is no edge between user “john” and role “admins”, because “john” does not
have “admins” in his roles. This is the graph that the analyzer uses to analyze
the rules.

Rules in this instance consist of the following elements, as displayed in
Fig. 6.10:

a name (used as a reference in the security report)

the type of the rule, which can be either of PROHIBITION or PRECON-
DITION (meaning that the condition given in the sub-rule defined below
should either not be fulfilled, or be fulfilled)

a message (printed in the report if the rule fails)

a priority level (to build a hierarchy of importance, so that less important
rules can be turned off easily — typical values may include DEBUG, INFO,
WARNING, ERROR, FATAL, or a numeric value)

User User User
+name: john +name: peter +name: karen
+uid: 500 +uid: 501 +uid: 502
+role: users +role: users, admins +role: admins

Role Role
tname: users +name: admins

Fig. 6.9. The graph after model and information are inserted
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rule subrule
-subrules[1..*] : subrule 1. -head : String
-name : String . -tail : String
-type : int contains -constraints[0..] : constraint
-message : String
-level : int

contains 0.
has

type constraint
-PROHIBITION : int = 1 -element : String
-PRECONDITION : int = 2 -condition : String

Fig. 6.10. Class diagram showing the structure of rules

e a sub-rule, which defines a path in the analyzer’s graph and a set of con-
straints, as defined below

A sub-rule has the following elements:

e the head, which is the starting point of the path in the analyzer’s graph
defined by the sub-rule
the target, which is the target of that path
a list of constraints, which defines conditions that the path has to satisfy

Here a constraint consists of the following elements:

e clement, the node that has to be checked
e condition, to be checked on that node

We consider the following example. If it has to be ensured that a certain
user, say “john”, does not have the role “admins” assigned, the following
parameters would be set for the rule:

name: check user roles

type: PROHIBITION

message: check user for given roles
priority: ERROR=4

In this example, we have a single sub-rule:

head: user
target: role
constraint: head.user.name == param.user.name
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constraint: target.role.name == param.role.name

This rule has two parameters that the user has to provide when generating
the report, indicated by the keyword param: the user-name “john” and the
role “admins”. A suitable XML document that provides these parameters for
every rule is expected as input.

The evaluation of this example rule is as follows. The analyzer attempts
to find the head of the rule (that is, “user: john”) in the analyzer’s graph.
Afterwards, it tries to find a path to the target (that is, “role: admins”).
If that succeeds it prints the given message in the security report, if the
user wants messages with priority ERROR printed in his report. The separa-
tion between the rule itself and the two parameters (“param.user.name” and
“param.role.name”) is introduced to make editing more comfortable: One does
not need to edit a rule for every user and every role that have to be checked.

With the help of these elements rather powerful rules can be defined. To
the analyzer the model is a graph representing the business application data
structure. The head and the target represent nodes within that graph. For
example, head could be “user” and target could be “role”. With that definition
there should exist a path between head and target. If it does not, the rule fails.
If that path exists, the analyzer will try to fill that path with valid data from
the given instance data. This means that for a valid connection from head to
target, every association along that path is instantiated with a discrete entry
from the business application’s data. If there is no valid instantiation, the rule
fails. If there is one, the constraints are checked. Every instantiated element
will be examined, and if one of the conditions fails, the rule fails. Otherwise,
it succeeds.

To make the rules more expressive, a rule can consist of several sub-rules,
where a sub-rule does not have the additional name, type, message, and level
attributes. In this way the analyzer is powerful enough to check rules such as
separation of duty, for example by using the sub-rules:

e check for distinct role A,
e check for distinct role B, and
e ensure that no user has both of them.

For a rule to succeed, each of the sub-rules has to succeed.

The additional information is needed to configure the analyzer properly,
and to customize the report. The name of the rule is used to output which
rules failed. The type is given to distinguish between preconditions and prohi-
bitions, meaning that either the success or failure of that rule is reported. So it
is conveniently possible to define states that must be fulfilled for every config-
uration and to define states that may not appear within a configuration. For
example, it may be vital for a system to have the password set for the super-
user account. Conversely, for separation of duty, it would be forbidden for the
same user to have two exclusive roles. A message is printed if a precondition
fails or if a prohibition succeeds. The message attribute simply gives the text
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that is written to the report if a message is printed. A template system prints
out the messages with any of the instance’s attributes in a freely configurable
manner. So it is possible to insert values from the violating instance into the
message, for example as “there is no password for user Joe”. Only with such
a feature do the messages become readable and thus the tool easily usable by
a human user.

The level attribute gives a “level of verbosity” to a rule. So the user can
have the tool evaluate some rules only. Level 1 means that, the rule is relatively
unimportant. An increasing number will show increasing importance for the
rule. The analyzer evaluates only the rules with a level higher than that given
as “level of verbosity” to that report.

6.3.3 Evaluating Rules

We use Prolog for the evaluation of the rules, which allows a rather elegant
treatment as it is designed for evaluating logical statements. In our experience,
it is also sufficiently efficient for a real-life application.

If one translates structural elements to “Atomic Prolog Terms” and the
analyzer rules to “Non-Atomic Terms”, one can ask the Prolog interpreter for
the instances of the Prolog rules. The advantage of using Prolog is that we can
concentrate on the essential problems specific to the analyzer without having
to solve the hard problems of finding the instances along the paths.

Evaluating Separation of Duty in SAP Systems

We use an example configuration from [Sch03b] to explain how separation
of duty in SAP systems can be evaluated by the analyzer. First of all, the
structure of the business application needs to be defined. For simplicity it
will be assumed that the structure looks like the one presented in Figure 6.7.
It certainly is just a very small part of the SAP security concept but as
an example, it will be sufficient. As displayed in Fig. 6.11, there are three

User Role Transaction Permission

Karen employee Create purchase Is allowed to cre-
(in charge of ser- ate some purchase
vice) in SAP.

Susan employee Commit purchase |Is allowed to release
(in charge of ser- purchase created by
vice, senior in rank Karen.
to Karen)

John employee Place orders Is allowed to place
purchasing agent orders with some

delivery agent.

Fig. 6.11. Small separation of duty example
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employees: Karen, Susan and John. Karen and Susan are just employees in
any department, and John is a purchasing agent at the company. To have
separation of duty, Karen may create a purchase and Susan may release that
purchase to John. John may order the desired goods from some supplier firm.
With this in place the Prolog rules would be very straightforward:

user (Karen, 1)
role(create-purchase, 1)

To have separation of duty in place there are two exclusive roles, which may
not be assigned to the same user: “create-purchase” and “release-purchase”.
John just places the orders, he does not do any supervision here. The first sub-
rule must have the head “user” and the target “role”. The second sub-rule
must have the same head and target but it needs a condition:

rulel.user.name == rule2.user.name

The type of this rule is PROHIBITION, the other attributes do not matter for
this example. What does the tool do now? It has created the predicates and
inserted the users and the role from the instance files. Afterwards it searches
the paths for the rule. The path from user to rule is quite obvious, so the
“connecting” predicate is created: at

user_role(name, role_id, rname)
:- user(name, role_id),
role(rname, role_id).

With that predicate the rule can be evaluated to:

user_role_rule(name,
role_idl, role_id2)
;- user_role(namel, role_id1l, X),
user_role(name2, role_id2, Y),
namel = name?2.

Now Prolog can be asked for:

user_role_rule(X,
‘create-purchase’,
‘release-purchase’).

and it calculates the correct answer. In the example in Fig. 6.11 there is
no solution to the predicate, because there is only Karen for role “create-
purchase” and Susan for role “release-purchase”, and user Karen is not equal
to user Susan.

Although this example is very simple, it serves as a demonstration of how
the analyzer can be used. In a real application, the path from user to role
might contain several nodes or one might not know the roles that have to be
exclusive, just the permissions, so one could exclude permissions contained
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in roles with several hundreds of entries each. In cases were a role contains
several hundreds of permissions, it is not obvious whether separation of duty
is in place.

SAP Transactions

Another example of the use of the analyzer to improve security is when the
transactions are also part of the data structure. Because of the design of
the SAP system, there are no security checks performed when a transaction
calls another one. By this transitivity, it is very difficult in large systems to
see who can execute a transaction. The permission to execute a transaction
includes the permission to execute every transaction called by the first one and
there does not seem to be a possibility to disable this feature. Thus creating a
transaction in SAP is a permission that gives access to everything. One should
notice that an employee who is allowed to create a transaction and execute it
can execute any transaction by calling it from his or her self-created one.

If access needs to be restricted to some transactions, it is therefore not
sufficient to ensure that the permission is given only in the roles associated
with that transaction, and that only the users allowed to execute that trans-
action are assigned those roles. It has to be ensured furthermore that there
is no transaction calling the restricted one, because SAP would not perform
security checks there and one would not prevent execution of the restricted
transaction.

To do so, one may model the transactions with their sub-transactions
as part of the analyzer’s model. Then the tool creates rules to check whether
permissions grant any user additional rights that are not part of his or her role.
It is usually not advisable to report every transaction that can be executed
without explicit permission. Because of the error-prone design, there will be a
lot of transactions that are meant to be called implicitly. One should however
at least check the potentially dangerous transactions, such as the ones for
changing permissions and roles.

Use Case for Checking SAP Permissions

Figure 6.12 presents a sample “use case” for checking the permissions on a

running SAP system. The SAP database is used to generate the information
necessary for the analyzer. An employee creates a UML model describing the
SAP system. We use the CASE tool Poseidon for UML to do so. These two
documents describe the business application. With these documents in place
one can create the rules. For creating the rules there is a GUI but the XML
files necessary can be edited manually, too.

When all the documents are prepared, the analyzer can check the rules
automatically. After the analyzer has finished the checks, the user can read
the security report and start reconfiguring the business application in order
to fulfil all the conditions contained in his rule set.
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Business Application Rule creation
create create
model rules

SAP (CASE tool) (GUI)
Y Y
. XML UML XML
(information) model (rules)
Y
analyzer

Y

security-report
(format defined
by templates)

Fig. 6.12. Sample configuration for using the analyzer

The security report is formatted as defined by the templates that are part
of the analyzer. The analyzer writes a freely configurable HTML file for review
with a web browser.

Further Applications

The analyzer can be used not only to check SAP systems, but also to check
most configurations of large-scale applications. The modular architecture
makes it easy to adapt to a new application. One needs to define the ap-
plication’s structure in UML, then the instance data must be converted to
proper XML files, corresponding to the XML Schema provided by the tool’s
schema generator. Afterwards, the rules have to be defined. Then the GUI
can be used, or the XML files can be written manually or generated by any
tool fitting the needs of the application. Finally the report can be generated
by the analyzer.
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In further work, other plugins have been developed for the UMLsec tool
which allow consistency checks to be performed between business process mod-
els specified in UML and permission configuration data. For example, one can
ensure that only the minimally necessary permissions for a given business pro-
cess have been assigned to the users, as required by the least privilege security
principle from Sect. 4.2.

6.4 Linking Models to Code

As noted for example in [Fow04], of ultimate benefit in software development
are not “pretty pictures”, but the running implementation of a system. In this
section, we present some approaches for linking UML models to implemen-
tations. The aim is to ensure that the benefits gained from the model-based
approach on the level of the system model, namely such as increased con-
fidence in satisfaction of critical requirements, actually carries over to the
implemented system, as one would hope.

6.4.1 Test-Sequence Generation

In this section we briefly refer to research on model-based testing of security-
critical systems using UML-like notations. Details have to be omitted for space
reasons but can be found in [JW01la, JW02, WJ02].

In specification-based testing, test sequences are generated from an ab-
stract system specification to provide confidence in the correctness of an
implementation. The traditional approach in this direction, namely that of
conformance testing, establishes that an implementation conforms to its spec-
ification. However, a complete test coverage is often infeasible, resulting in a
need for test-case selection. For security-critical systems, finding tests likely
to detect possible vulnerabilities is particularly difficult, as they usually in-
volve subtle and complex execution scenarios and the consideration of domain-
specific concepts such as cryptography and random numbers.

The cited research aimes at generating test sequences for transaction sys-
tems from a formal security model supported by the CASE tool AuToFocus
which has a UML-like notation. To test an implementation for vulnerabilities,
we compute test sequences from the security model covering possible viola-
tions of the security requirements. The test sequences are determined with
respect to the system’s required security properties, using mutations of the
system specification and attack scenarios. To be able to apply them to an
existing implementation, the abstract test sequences are concretized.

The motivation for specification-based testing is that, in general, the im-
plementation of a system is very complex. To allow proofs of security proper-
ties, abstraction techniques are used: in models of cryptographic transactions,
messages, keys, and random numbers are usually represented by abstract data
entities which can be arguments to abstract operations such as encryption or
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hashing, and part of the actual messages exchanged may have been left out.
Besides, where the security model is developed independently of the imple-
mentation, it cannot be concluded from the correctness of a security model
that the implementation is secure.

Confidence in the correctness of an implementation can be gained by ex-
tensive testing. Testing for security holes is usually restricted to penetration
testing: A so-called “tiger team” of experts manually tries to break the sys-
tem or tools such as SATAN are used to search for known vulnerabilities. This
approach is not satisfactory as it depends largely on the skill of the employed
tiger team or the knowledge encoded into the tool, which does not consider
application-specific security requirements.

[JWO01la, JW02, WJ02] show how to complement this approach by gener-
ating test sequences from a security specification. The aim is to find those
test sequences that are most likely to detect possible vulnerabilities. For this
purpose, one adapts methods from classical specification-based testing to the
application domain of security-critical systems. Specifically, domain-specific
concepts such as cryptography, knowledge of or access to secrets, and threat
scenarios are included. Test sequences likely to detect vulnerabilities are com-
puted using mutations of the specification that lead to violation of the security
requirements. Further, it is shown how to translate the abstract test sequences
derived from the security model to concrete test sequences that can be applied
to an existing implementation.

Vulnerability Coverage Using Mutations

As it is not feasible to exhaustively test every behavior of a security-critical
system, first appropriate test-case specifications have to be selected. For se-
curity testing, the aim is to cover a large number of possible vulnerabilities.

One can use structural coverage criteria such as state or transition coverage
on the models [OXL99] and restrict them to those that are marked “critical”,
but this has the drawback that it does not take into account the security
requirements.

The difficulty with defining coverage criteria related to the security re-
quirements is that they are mostly universal properties. Therefore, a security
requirement @; can only be used to verify the model, not the implementation.
If a trace fulfilling —®; is found, the model violates the security requirement
and must be corrected. Otherwise, @; by itself cannot be used to select relevant
traces, as all traces satisfy @;.

In this case, mutation testing and fault injection techniques [Off95, VM9§]
prove to be promising approaches. In mutation testing, errors are introduced
into a program, and the quality of a test suite is measured by its ability to
distinguish the modified program from the original program. Fault injection
works in a similar way, but is often also used for reliability evaluation: to
determine if a program tolerates a perturbation of the code or data states.
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We introduce errors into the specification of the security-related behavior,
generate the threat scenarios, and determine if and how the introduced errors
can lead to security violations. The introduced errors can correspond to er-
rors in the implementation or to attacks leading to such errors, for example
subjecting a smart card to environmental stress.

A mutation function & can be based on general possible mutations for ex-
pressions and operands. For security testing, € should be based on common
programming errors likely to lead to vulnerabilities, such as missing plausi-
bility checks or wrong use of identities [AKS96]. In addition, in our model
cryptography must be taken into account, leading to mutations correspond-
ing to confusion of keys or secrets, or to missing or wrongly implemented
verification of authentication codes.

Concretization of Abstract Tests

The abstract test sequences computed from the formal security specification
still have to be translated to byte sequences as the concrete test data that can
be used to test the actual implementation.

In many cases, concretization can be achieved using straightforward map-
pings between abstract and concrete test data [DBGO1], and executing the test
using a test driver that passes the inputs to the component to be tested and
verifies if the outputs are as expected. However, testing security-critical sys-
tems involves additional complications, mainly because of non-determinism,
for example arising from randomly generated keys and nonces, and the use of
cryptographic primitives:

e In formal specifications, cryptographic primitives are usually modeled sym-
bolically, rather than as sequences of bytes, to make verification feasible
(see [AROOa, AJO1] for a justification of this approach in general). The
test driver has to map these symbols to sequences of bytes in a consistent
way. Conversely, sequences of bytes created and output by the tested com-
ponent must be stored by the test driver and used in place of the relevant
symbols in the test data of the remainder of the execution. For example,
these could be random values such as nonces or session keys.

e Sometimes, values are abstracted away in formal specifications to simplify
verification because they are seen to be independent of a security property
at hand. These have to be included in the concrete test data in a consistent
way.

e If encryption is used, the test driver must know the corresponding keys
and encryption algorithms to be able to compute the encrypted input data
and verify encrypted output data.

e Hash values or message authentication codes contained in the output data
can only be verified when the complete data that was hashed is available
to the test driver.
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6.4.2 Code Generation and Code Analysis

There are other ways to link models to code besides test-sequence generation,
as we briefly point out.

Code generation can be used to directly generate code from a UML model.
Where this is possible, there is usually no need for conformance testing. Test-
ing for security properties may, however, still be useful to detect weaknesses
not apparent on the design level.

So far, code generation is mainly used in a fragmentary way. A main
application is, for example, to generate class definitions from class diagrams.
More extensive support for code generation, such as code generation from
statecharts, is being developed. However, it will remain to be seen to what
extent the use of UML as a visual programming language will be established.
When writing visual programs for complete systems questions of scalability
may become more apparent than when writing abstract specifications of parts
of a system. For this reason, test-sequence generation may still be useful in
the foreseeable future.

Code analysis: The same concepts and definitions used in the previous chap-
ters to analyze UML models for security requirements can also be used to
analyze suitable abstractions of programs. For example, there exist static anal-
ysis tools which extract a state machine model from source code and allow
our security analysis algorithms to be used after a suitable adaptation.

6.5 Notes

The general material from Sections 6.1 and 6.2 is based on [JS04c, JS04b]. The
model-checking UMLsec plugin in presented in [JS04a]. The first-order logic
analysis plugins are explained in [JirO4g, Jir0O4c]. The UMLsec tool frame-
work altogether is demonstrated in [Jiir04k]. Part of the implementation effort
has been performed in the context of about 20 Master’s and Bachelor theses
and advanced study projects. The construction of this tool has profited from
experience in the development of the industrial-strength computer aided soft-
ware engineering tool AUTOFocUS at the TU Munich [HMR*98, RITWT03].

The literature on how to use XMI to provide tool support for UML in-
cludes [Ste01b, Ste03a], including an example using the Edinburgh Concur-
rency Workbench for analyzing UML models. Some new developments on
diagram interchange for UML are explained in [BJMFO02]. There are several
existing tools for automatic verification of UML models described in the liter-
ature. The HUGO Project [SKMO1] checks the behavior described by a UML
Collaboration diagram against a transitional system comprising several com-
municating objects. The functionality of each object is specified by a UML
Statechart diagram. The vUML Tool [LP99] analyzes the behavior of a set
of interacting objects, defined in a similar way. The tool can verify various
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properties of the system, including deadlock freeness and liveliness, and find
problems like entering a forbidden state or sending a message to a terminated
object. Both tools do not have any special features for describing the security
features of the system being modeled. [CRS04] presents a tool which extracts
execution sequences from UML statecharts given as XMI and simulates them
by translation to the Abstract State Machine programming system AsmGofer.
Although there is an increasing amount of research on advanced tool support
for UML, it seems that little work has been done to provide advanced tool
support, such as model-checkers or automated theorem provers, for verify-
ing particular properties included as stereotypes in application-specific UML
extensions.

The research in Sect. 6.3 has been presented in [HJ03a]. Related ap-
proaches to analyzing security configurations include for example the “Config-
uration Review Test” [Pol92]. There seems to be no implementation of these
tests that uses rules for this purpose. Existing tools for this approach check
some conditions of specific applications, mostly operating systems. These tools
are designed to check for certain security weaknesses, common to a number of
systems. Other approaches using logic programming for access control analysis
include [BdVS02]. [RS01] uses SQL to administer permissions for distributed
data. [GHRO3] uses a model-checker to analyze Linux configurations. [BP04]
uses the predicative specification of user rights within an object oriented use
case driven development process. The specification of methods is extended
by a permission section which describes the right of some actor to call the
method of an object. A representation function is introduced that describes
how actors are represented in the system.

The work in Sect. 6.4.1 was presented in [JWO01la, JW02, WJ02]. Work re-
lated to it includes extensive research into specification-based testing, such as
[DF93, PS97, HNS97]. Dushina et al explain concretization in their Genevieve
framework [DBGO1]. The AVA approach [VM98] focusses on identifying criti-
cal statements rather than finding test sequences, for which random distribu-
tions are used.

With respect to code analysis against abstract security properties such
as secrecy and authentication, relatively little work has been done yet. For
example, most work in verifying security protocols so far has concentrated
on the specification, rather than the implementation level. Research in code
verification that might be fruitfully used in this direction includes [MH98,
AGMO04, CCGT03, NPWO02].

6.6 Discussion
After explaining the necessary background, we presented tool support for the

automated analysis of UMLsec models with regard to security requirements.
It includes analysis plugins based for example on model-checkers, automated
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theorem provers, and verification engines realized in Prolog. The UMLsec anal-
ysis suite also includes a framework for implementing verification routines for
the constraints associated with the UMLsec stereotypes. On the one hand, the
existing analysis routines allow the UMLsec user an easy and automated secu-
rity analysis of his system just by applying the predefined stereotypes, without
requiring the user to formalize these requirements first. On the other hand,
advanced users of the UMLsec approach are able to use this framework to
implement verification routines for the constraints of self-defined stereotypes
and to include them into the UMLsec tool.

We also presented research on linking the UMLsec approach with the au-
tomated analysis of security-critical data arising at runtime. The example
presented here is a tool which automatically checks the SAP R/3 configu-
ration for security policy rules. Because of its modular architecture and its
standardized interfaces, it should be possible to adapt it to check security
constraints in other kinds of application software, such as firewalls or other
access control configurations. Although there already exist commercial tools
for analyzing SAP data, the work presented here offers a greater range of
properties to be checked, and also offers the new possibility to enhance the
security analysis by linking it with other information, such as security-critical
business process specifications formulated in UML diagrams, in an integrated
setting within the UMLsec framework.

Finally, we briefly referred to some approaches for linking UML models
to implementations to make sure that the implementation is actually secure,
and not just the model. There are three approaches to achieve this, namely
model-based test-sequence generation, code generation, and code analysis.
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A Formal Foundation

In this chapter, we present the foundation used in Chap. 8 to define a formal
model for a part of UML to enable advanced tool support.

We introduce the notion of UML Machines. They give a mathematically
rigorous framework for the approach to secure software engineering explained
in the previous chapters. While having a sound mathematical foundation, their
notation is rather flexible and allows capturing complex concepts straightfor-
wardly. In particular, they let us model interaction with the environment of a
system. We also define UML Machine Systems (UMSs) that allow one to build
up UML Machine specifications in a modular way and to treat external influ-
ences on the system beyond the planned interaction, such as attacks on inse-
cure communication links. We define notions of refinement and rely-guarantee
specifications for UML Machines and prove that rely-guarantee specifications
are preserved under refinement. Finally, we explain how we use UML Machine
Systems to specify security-critical systems, that may employ cryptographic
operations. We also give definitions for secrecy, integrity, authenticity, fresh-
ness, and secure information flow, together with equivalent internal character-
izations which allow easier verification. These security properties are shown
to be preserved under refinement, avoiding the so-called refinement problem.
Because of the modular way UML Machines are defined, they give a formal
framework for formally analyzing security-critical systems in their own right,
independently of the UML notation.

The proofs for statements in this chapter are given in Appendix C.

7.1 UML Machines

Our choice of the formalism of UML Machines is motivated by our goal to use
them to formulate our security modeling concepts in a mathematically pre-
cise way. In particular, they provide a foundation for security modeling with
UML. We will also explain how this formalism can be used as a foundation
for advanced tool support. UML Machines are transition systems the states of
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which are algebraic structures, and which have built-in communication mech-
anisms similar to the corresponding mechanisms in UML. Inspired in their
presentation by Abstract State Machines [Gur95], the role of UML Machines
is thus to provide the framework for formulating the concepts we use, which
are close in spirit to the models of data-flow, such as [Bro86, Abr90].

We will use UML Machines to specify components of a system that interact
by exchanging messages from a given set Events which are dispatched from
(resp. received in) multi-set buffers called output queues (resp. input queues)?!.
The idea is that a UML Machine may interact with its environment by adding
values to its output queue and by retrieving the values from its input queue.

We assume a set of variables. Terms are defined as usual by starting with
variable names and applying function names recursively:

e A variable is a term.
e If f is a function name of arity r > 0 and ty,...,t, are terms, then
f(1,...,t.) is a term.

Definition 7.1. Given a set F of function names containing at least the
nullary function names true, false, and undef, a state A consists of:

o a set X (its base set) and

e interpretations of the function names in F on X : an r-ary function name
[ is interpreted as a function f : X" — X. We assume that true, false,
and undef are interpreted as mutually distinct elements of X .

F' is called the vocabulary of A and is denoted as Voc A.

As usual, a set can be interpreted as a function taking values in {true,
false}. Also, one often notationally identifies an algebra with its base set, for
example by writing x € A instead of € X in the above situation. Similarly,
we only distinguish between a function name and its interpretation when
necessary to avoid misunderstanding. We write Bool for the set {true, false}.
A wvariable assignment over a state S is a function from a set of variables to
the base set of S. It is extended to evaluations of terms in the usual way using
the interpretation of function names.

Definition 7.2. A UML Machine A = (Voc A, Init A, Rule A) consists of

e a set Voc A of function names that contain at least the set names inQu 4
and outQuy,
an initial state Init A of vocabulary Voc A, and
a transition rule Rule A which can be of the form as defined inductively
mn Fig. 7.1.

The set names inQu 4, outQu 4 model the input buffer and the output buffer
of the UML Machine A that may change them only by deleting elements from

! Here we follow the UML terminology which is confusing in so far as input/output
queues are not queues, but multi-sets.
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R ::= skip

f(3) =t
if g then R else S
do — in — parallel R; ... R; enddo
choose v with g(v) do R(v)
seq R, ... R, endseq
forall v with g(v) do R(v)
iterate(R)
loop v through list X R(v)
loop v through set X R(v)
while gdo R
case v of

vE€ X;:do Ry

ve X, :do R,
else S

Fig. 7.1. UML Machine rules

inQu4 and by adding elements to outQu,4. We assume that at the initial state
Init A of the UML Machine, they always have the value §.

Below we give an informal semantics for the transition rules; the formal
semantics can be found in Appendix B. A UML Machine A is executed by
iteratively firing the transition rule Rule A, starting from the initial state
Init A. Thereby, its current state is updated; that is, the interpretations of its
functions are redefined in terms of the previous interpretations. This way, the
UML Machine changes between different states. By Definitions 7.1 and 7.2,
each state consists of a base set and interpretations of the function names in
F', which includes the names inQu4 and outQuy,.

Skip rule: skip is a rule. It causes no change.

Update: Given terms s1,..., s, and ¢, we have an update rule f(s1,...,s,) =
t. Suppose that at the point of execution of a given instance of this rule,
the terms s1, ..., sy, t evaluate to the values §i, ..., s, in the base set of
a UML Machine A, respectively. Then the execution of this rule updates
the interpretation of the r-ary function name f at the r-tuple (s1,...,s,)
of values of A to map to ¢. Thus an update rule updates the function at
a single position; all other interpretations are left unchanged.

Conditional: If g is a closed formula of first-order predicate logic and R, S are
rules then

if g
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then R
else S

is a rule. If g holds, the rule R is executed, otherwise S. If S is equal
to skip then else skip can be omitted, provided indentation is used to
prevent confusion.

Blocks: If Ry, ..., Ry are rules, then

do — in — parallel

Ry

Ry
enddo
is a rule. To fire this rule, R;,...,R) are executed simultaneously, if
they are mutually consistent. Consistency means that updates concerning
the same function name define the same value: for any two update rules
f(3) :=t and f(5) :=t', we have t = t'. In case of inconsistency, the exe-

cution of the UML Machine stops. Note that this parallel composition is
truly parallel, rather than a non-deterministic interleaving. For example,

do — in — parallel z:=y y:=2 enddo

swaps x and y.
Choose: If v is a variable, g(v) is a logical formula with one free variable, v,
and R(v) is a rule, then

choose v with g(v) do
R(v)

is a rule that chooses an element a of the base set of A such that g(a) holds
and executes R(a). In case such an a does not exist, the rule is interpreted
as skip.

Sequential composition: If Ry,..., R, are rules, then
seq
R,
R,
endseq
is a rule, meaning that Ry,..., R, are executed sequentially. If no confu-
sion can arise, the shorter notation Ry; ...; R, may be used.

Forall: If v is a variable, g(v) is a first-order formula with one free variable,
v, and R(v) is a rule, then

forall v with g(v) do
R(v)
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is a rule, which is fired by executing R(a) for all elements a in the base
set of A such that g(a) holds before they are executed in parallel, if they
are mutually consistent. Otherwise, the execution of the UML Machine
stops.

Iteration: If R is a rule then

iterate(R)

is a rule that iteratively executes the rule R until executing R gives no
change or causes the execution to stop.

Note that the do — in — parallel rule may be expressed in terms of the
forall rule, as in the Abstract State Machine setting [Gur97].

For convenience, we define some more transition rules which may be de-
fined in terms of the ones above:

Loop through list: If v is a variable, X is a finite sequence of values in A, and
R(v) is a rule, then

loop v through list X
R(v)

is a rule that iteratively chooses all elements z € X if X # (), according to
the content and order of X before executing the rule, and executes R(z).
The rule acts as skip if X = [].

Loop through set: If v is a variable, X is a multi-set name, and R(v) is a rule,
then

loop v through set X
R(v)

is a rule that iteratively chooses all multi-set elements © € X as X was
before executing the rule, with the correct multiplicities and in a non-
deterministic order, and executes R(z). The rule does nothing if X = §.
This rule is used instead of loop v through list X R(v) in situations
where the order of the chosen elements does not matter, to avoid over-
specification at the level of abstract modeling.

While: If g is a closed first-order formula and R is a rule then

while g do
R
is a rule. The rule R is executed while g holds.

Case distinction: If v is a variable, X1, ..., X, are mutually disjoint subsets
of the base set of A, and Ry, ..., R, are rules, then the following is a rule:
case v of

v E X1 :do R1
ve X, :do R,

else S
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The rule is executed by evaluating v and executing one of the rules
Ry,..., R, depending on the value of v. v € {x;} : do R; may be ab-
breviated to z; : do R;.

We define the following syntactic shortcuts, where A is a UML Machine and
X is a multiset, and = is syntactic equality between transition rules.

tooutQu 4 (X) = outQuy = outQuy W X
toinQu4(X) = inQuy :=inQuy WX

A run 7 € Run A of a UML Machine A is a finite or infinite sequence
So, 51, - .. of states such that the following conditions are satisfied:

Sp is the initial state Init A.
For each n € N, if S,, is the last element of the sequence r then
— any consistent application of the transition rule Rule A at state S,
leaves the state S,, unchanged, or

— there exists an inconsistent application of Rule A at state S,,.

e For each n € N, if S, is not the last element of the sequence r, then there
exists a consistent application of Rule A in S,, which S),,41 is the result
of, and we have k > n such that Sy, # .5,,.

Thus the definition of runs models termination by a finite sequence; runs can
only be infinite if the state keeps on changing.

The idea of this definition is that the hypothetical “machine” which exe-
cutes the UML Machine models chooses an update set non-deterministically. If
it turns out to be inconsistent, the machine cannot proceed and the run stops.
Choosing the update set is an internal action of the hypothetical execution
machine which cannot be observed by the environment.?

Note that due to the non-determinism introduced for example by the
choose with do rule, there may be a non-singleton set of runs of a UML
Machine A. In particular, some of the branches of the choose with do rule
may lead to an inconsistent application of a rule, while others may lead to a
consistent rule application. In such a situation, there are runs that terminate
at that choose with do rule while others continue with the consistent rule
application.

We define two UML Machines A and B to be equivalent if Voc A = Voc B
and Run A = Run B.

% For readers familiar with process algebras this is, for example, just like the unob-
servable T action in the process algebra CCS [Mil89]. Intuitively, in CCS notation,
the situation of having both consistent and inconsistent update sets at a point
would thus look like 7+ p where after firing 7, the machine gets stuck, while after
choosing p, the execution may continue.
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One may observe the input/output behavior of a UML Machine as fol-
lows. Given a UML Machine A, tuples i and o of input and output names,
and a sequence I of i-indexed multi-set tuples, consider the UML Machine
Behav; o(A(I)) with

e the vocabulary Voc (Behav; o(A(I))) = Voc A U outlist(A4), assuming
outlist(4) ¢ Voc A, if necessary by renaming,

e the initial state Init (Behav; o(A(I))) defined as Init A and such that
outlist(4) = [], and

e the transition rule Rule (Behav; o(A(I))) as given in Fig. 7.2.

Rule (Behav; (A(1))) :
loop I through list I
toinQuA(IinQuA);
forall f with f € ido
f=1
Rule 4;
forall f with f € oU {outQu 4} do
outlist(A) ; := outlist(A) . f;
outQuy =0

Fig. 7.2. Behavior of UML Machine

Here f := Iy means that the input name f is assigned the f-component of
the i-indexed tuple I of input multi-sets. outlist(A) ; := outlist(A) ;. f means to
append the current value of the name f to the f-component of the sequence
outlist(A). After completion of any possible run of this rule starting from an
initial state where outlist(A) evaluates to the empty list [], outlist(A4) contains
a sequence of o-indexed tuples of multi-sets of values. Intuitively, this is the set
of possible sequences of multi-set tuples of output values in the output names
in o by iteratively adding each multi-set in Ii;qu, to inQu, and assigning
each multi-set in Iy to f for f # inQuy,, then calling A, and recording the
multi-set of output values from outQu,4 and the values of the output names
in outlist(A).

Definition 7.3. Given a a UML Machine A and tuples i and o of input and
output names, the (i, o)-input/output behavior of A is a function [A]i o()
from finite sequences of multi-sets of values to sets of sequences of multi-sets
of values obtained by defining [A]io(I) to consist of the possible contents of
outlist(A4) for each run of Behav; o(A(I)). For i = o = (), we simply write
[A]J() and call it the input/output behavior of A.

Ezxample

As an example consider the UML Machine Sndr with
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e vocabulary Voc Sndr = {currState, inQug, 4, outQug, 4, }, where currState
is a set name,

e the initial state Init Sndr defined by currState = inQug, 4, = outQug, 4, =
@, and

e whose transition rule Rule Sndr is given in Fig. 7.3.

Rule Sndr :
case currState of
Wait: do
choose e with e € inQug,4. do
do — in — parallel
iNQugpgy == iNQugng, \ {e }
if e = send then currState := Send
enddo
Send: do
do — in — parallel
currState := Wait
tooutQug, 4. ({ transmit } )
enddo

Fig. 7.3. Example UML Machine

The resulting input/output behavior can be characterized as follows.

Fact 7.4. For each sequence (I1,...,1I,), [Sndr](l1,...,I,) consists of those
sequences (O1,...,0,) that fulfill the following conditions, for each i €

{1,...,n}:

o O; C{transmit } (that is, each O; is either empty or contains the single
element transmit ).

o HO1W...WO0;) <H(LW...uWI_1)\{send} (there must be at most as
many transmit outputs as there are send z'npute;).3

e The conditions that

ﬁ(IjL‘!’J. . .L‘!’JIi_l)—ﬁ((IjLﬂ. . .Lﬂ]i_l)\,{send }) < i—j—2*ﬁ(OthJ. . .L‘!‘JOi_l)

for each j <i and that (01 W ... WO,;_1) < (L W... W L_1)\{send }
imply 40; > 0.

The last point means that an output of transmit is produced at time 4, which
means $0; > 0, provided that not all inputs of send that have previously been
received have already prompted outputs, formalized as (O W ... W 0;_1) <
(L W...WwI;_1)\{send } , and provided any other input received has already
been consumed. The last condition can indeed be formalized as

3 The definitions of # and \, can be found in Sect. 3.3.1.
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ﬂ(ljL+J...L+JI,-_1)—ﬂ((IjLﬂ...LﬂIi_l)\,{send}) <i—j—2*ﬁ(0jLﬂ...LﬂO,‘_1)

as in the statement of Fact 7.4, because each processing of a send input takes
two cycles, and during the remaining number of cycles, the system must have
processed other inputs, provided there were any inputs at all. Note that in
this example, it is not the case that send € I; implies transmit € O,
because there may be another message received in I; which is processed at
step n instead of the send and which does not produce an output. A similar
effect occurs within the UML semantics, where there is also no fixed order of
dequeuing elements from the input queues prescribed by the UML definition,
as explained in Chap. 8.

7.2 UML Machine Systems

We would like to build up UML Machine specifications in a modular way, by
letting a set of UML Machines together with a set of communication links
connecting them form a new UML Machine. To achieve this, we firstly define
the notion of an UML Machine System (UMS). It allows a rather flexible
treatment using a scheduler for the UML Machines contained. Our explicit way
of modeling the communication links and the messages exchanged over them
allows modeling exterior influence on the communication within a system, such
as attacks on insecure connections. Also, UMSs give a natural foundation for
UML subsystems, as explained in Sect. 8.1.7.

To define the concept of UML Machine Systems, we first define the set
Events from the previous section, containing the communication events, in
more detail. We assume a set MsgNm of message names consisting of finite
lists ny :: g 1 ... :: ng of names, where k > 2 and

e ni,...,nt—2 € UMNames, for a set UMNames of UML Machine
names, are UMSs (when &k > 3),
ni_1 € UMNames is a UML Machine, and
ny € locMsgNm for a given set locMsgNm of local message names.

Here ny :: ny ... 2t ng—y is called the address of the message with name
ny = ng ... ng. We assume that MlsgNmUlocMsgNm is partitioned into
sets of operation names Op, signal names Sig, and return message names Ret,
such that ny :: no ...t ng € Op (resp. Sig resp. Ret) if and only if ny €
Op (resp. Sig resp. Ret). For each operation name op € Op NlocMsgNm
there is a corresponding return message name return,, € Ret NlocMsgNm.
Messages with names in Op are called synchronous, meaning that the sender
of the message passes the thread of control to the receiver and receives it
back together with the return message. Those in Sig are called asynchronous,
meaning that the thread of control is split in two, one each for the sender and
the receiver. These kinds of messages are motivated by the analogous concepts
in UML, as defined in Chap. 8.
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We then define the set Events of events to consist of terms of the form
msg®? (expy, ..., exp,), for an arbitrary number n, where:

msg € MsgINm is an n-ary message name,

sdr = [] if msg € Sig U Ret and otherwise sdr is a message address as
defined above, and
o exp,...,exp, € Exp are expressions, the parameters, or arguments of the

event, for a given set of expressions Exp.

Thus an element of Events is a message with arguments, and a sender
address in the case of a synchronous message. The latter is necessary for
handling synchronous messages, for which return values have to be sent back
to the sender. If the superscript sdr is equal to the empty list [], it may

be omitted. We define Args(m) def (expy,...,exp,) to be the sequence of

the arguments of m = msg*¥ (exp,, ..., exp,), msgnm(m) def msg to be

the name of its message, and sndr(m) = sdr to be its sender. We write
head(msg*? (exp,,- .., exp,)) for head(msg), which is the first part of the
address of msg (for example, the UMS which contains the UML Machine that
is the recipient of msg). Simiarly, we define tail(msg*?" (exp,,...,exp,)) for
tail(msg)*" (exp,, . .., exp,), which is the message with the remainder of the
address. The definitions are used to “unpack” the address of a message when
executing a UMS.

Definition 7.5. A UML Machine System (UMS) A = (Namey, Comp,,
Sched 4, Links4, Msgs 4) is given by the following data:

o A name Name, € UMNames from a fized set of UML Machine names
UMNames.

o A finite set Comp, C UMNammes of components. Each component C €
Comp 4 has associated finite sets Acté4 of activities and Atté4 of local
attributes. Fach activity in Acté4 has an associated UML Machine, possibly
associated with a UMS from which it arises as defined in Fig. 7.4.

A UML Machine Sched 4, the scheduler.

A set Links 4 of links I = {C,D} C Comp 4.

A set Msgs 4, C MsgNm of names of messages that the UMS is ready to
receive.

Each activity UML Machine A of a component C is assumed to have the
attributes of C as names, and also a flag finished 4. Similarly, the scheduler
UML Machine Sched 4 has a flag finishedsched , - The activities of a component
C are required to have disjoint vocabularies except for the input and output
queues inQue and outQue and the attributes. The scheduler may call each
activity A as a subroutine and may read each flag finished 4. Otherwise, the
components and the scheduler are required to have disjoint vocabularies.

The intuition is that a UMS models a computer system that is divided into
a set of components that may communicate by sending messages through
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bi-directional communication links. {C, D} € Links4 means that there is a
communication link between the components C' and D, where we may have
C = D. The behavior of each component is specified using activities that are
coordinated using the scheduler that calls the respective UML Machines, and
which have access to the input and output queues and local attributes of the
component. These UML Machines specifying the activities may themselves
arise from UMSs as defined below. In that case, each UMS A specifying an
activity of a component C has its own link set Linksy4, rather than sharing
the links with the UMSs specifying other activities of C. This feature can be
exploited to include mobility aspects [JK03], which is, however, beyond scope
here. Note that the disjointness constraints on the vocabularies in the above
definition are not a restriction but may be achieved by renaming.

The execution of a UMS A is the joint execution of the UML Machines
giving the component activities of the UMS, scheduled by the UML Machine
giving the scheduler. It is modeled as a UML Machine Exec A with

e the vocabulary Voc (Exec .A) which is the union of the vocabularies of
the UML Machines modeling the activities in Act?' and of the scheduler
UML Machine Sched 4, with the set {linkQu 4() : I € Links 4} of link queue
names and which additionally contains the name finishedgxec 4,

e the initial state Init (Exec .A) defined as the initial states of the UML Ma-
chines modeling the activities in Act“c4 and of the scheduler UML Machine
Sched 4 and where all input, output and link queues evaluate to §) and all
finished flags evaluate to false, and

e the transition rule Rule (Exec A) given in Fig. 7.4.

In Fig. 7.4, we use the following syntactic shortcut, where A is a UMS,
ILinks 4 a link of A and X is a multiset:

tolinkQu 4 ; (X)) = linkQu 4 (1) := linkQu 4 (1) ¥ X

The rule processes each incoming message, provided it is in the set of
messages accepted by A. In the case of an operation call, one needs to keep
track of the message sender by adjusting the sender name attached to the
message name. The message is then forwarded to the relevant component of
A. Then, similarly, the messages sent over links within A are processed and the
scheduler is called, which in turn may call the UML Machines in Comp 4. Thus
the definition Exec A is recursive; it is well-defined because by construction
a UMS cannot be contained in itself. Finally, the output messages from the
components in A are processed. Again, in the case of operation calls the sender
names are adjusted. Note that if the name A itself appears in the list of UML
Machine names determining the sender (resp. receiver) of a message while this
message is actually within A, this signifies that the message comes from (resp.
goes to) an UML Machine outside A.

Precisely, a message nq :: no :: ... 2 ng sent by a UMS which is part of the
system n is delivered as follows:
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Rule Exec A :
loop e through set {e € inQu; : msgnm(e) € Msgs 4, A head(e) € Comp 4 }
if msgnm(e) € Op then ¢’ := msgnm(e)™*"" (<) (Args(e))
elsee’ :=¢;
tOinQuExec head (e) ({tail(e/) } )5
inQue := 0;
loop e through set {e € l¥);¢ ik, INkQUExec 4(1) : head(e) € Comp 4 }
t0iNQUExec head(e) ({tail(e) } );
forall [ with [ € Links4 do
linkQu 4 (1) := 0;
Rule Sched 4;
finishedgxec 4 := finishedsched 4 ;
forall S with S € Comp 4 do
loop e through set outQugyec 5
if msgnm(e) € Op then ¢’ := msgnm(e)®* =" () (Args(c))
elsec’ :=¢;
if head(e) = A then tooutQue ({tail(e’) } )
else if {S,head(e)} € Links4 then tolinkQugxec 4, {5, head(e)} (€’ )
OUtQuExecS = w

Fig. 7.4. Behavior of UMS

e If n; = n then the system n sends out the tail no :: ... :: ng of the message
within the UML Machine containing n.

o If n; is a part of n, then the tail nq :: ... :: ny, of the message is delivered
to n,.

Note that the definition of Rule Exec A is complicated by the handling
of synchronous messages op € Op and their returns, introduced since these
are offered by UML. To use UML Machines just with asynchronous messages
sig € Sig, which will be our main usage, the simpler definition in Fig. 7.5

suffices. Here links s < {{4, B} € Links 4 : A = S} is the set of links connected
to S. It is a straightforward formal exercise to show that, if all messages are
asynchronous, the rule in Fig. 7.5 indeed defines a UML Machine equivalent
to the on defined in Fig. 7.4.

An example for a scheduler Sched 4 is the one given in Fig. 7.6 that, given
n activities as UML Machines Ay, ..., Ay, simply executes them in parallel.
Each of these UML Machines may in turn be defined as the behavior Exec A
of a UMS A, as defined above.

7.3 Refinement

A useful paradigm of system development is that of stepwise refinement [Dij68,
Wir71]. One starts with an abstract specification and refines it in several steps
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Rule Exec A :
forall S with .S € Comp 4 do

tOi”QUExecs({{tail(e) :e € (inQu¢\ Msgs )
Lﬂlelinkss linkQuExecA(l) A head(e) =5 } ;

inQue = 0;

forall [ with [ € Links4 do
linkQu 4 (1) := 0;

Rule Sched 4;

finishedgxec 4 := finishedsched 4 ;
forall [ with [ € Links4 do

linkQugxee 4 (1) := {e € outQugyec s : S € Comp 4 Al = {head(e), S} };
tooutQue (Wsccomp , {tail(e) : € € outQuExec s A head(e) = Exec A} );
forall S with S € Comp 4 do

outQugxec 5 := 0

Fig. 7.5. Behavior of UMS (only asynchronous messages)

Rule Sched 4 :
do — in — parallel

Rule 4,

Rule A,
enddo;
finishedsched , := finishedexec a; A ... Afinishedexec 4,

Fig. 7.6. Simple scheduler

to a concrete specification which can then easily be implemented. For more
discussion on the role of refinement in system development see Sect. 8.2.1.

We use underspecification to postpone design decisions to a later stage of
system development, for example by making use of the choose rule defined in
Sect. 7.1. Correspondingly, we will define a notion of refinement that allows
us to proceed from abstract to more concrete specifications in a well-defined
way. It is inspired by a definition given in [BS01] in the setting of stream-
processing functions, as well as the related notion of interface refinement,
which is more flexible. We will also define a notion of delayed refinement,
which is a relaxation of refinement by allowing delays to be inserted. It allows
a more flexible treatment, while still offering convenient structural properties.
Our use of refinement is demonstrated in the case-study in Sect. 5.1.

First we give some preliminary definitions for delayed refinement. The
following definition is influenced by the treatment in [AL93].

Definition 7.6. Two sequences s,t of event multi-sets are stutter-equivalent
if § = t, where for a sequence s of event multi-sets, 5 is the sequence obtained
from s by leaving out all empty multi-sets.
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For sets S,T of sequences of event multi-sets we write SCT if for
each multi-set s € S there is a multi-set t € T such that s and t are
stutter-equivalent. Two sets S, T of sequences of event multi-sets are stutter-
equivalent if SCT and T CS.

Thus, two sets of sequences of event multi-sets are equivalent if they are the
same up to inclusion of empty event multi-sets into the sequences.

For a set S of finite sequences of event multi-sets and a set £ of events, we
define

SAE L LMNE, ..., M\E) : (M, ..., M;) € S}.

This is simply a generalization of the filter operator \ from Sect. 3.3.1 to
sequences of event multi-sets: all events except those in £ are filtered out. It
is needed to make the following definition relative to a set £ C Events.

Definition 7.7 (Behavioral refinement of UML Machines).

Suppose we are given UML Machines A, A’, tuples i and o of input and
output names, and a set £ C Events.

We say that A" £-(i,0)-refines A if for each sequence Ir,...,I, of event
multi-set tuples with | J, |I;] C £, we have

[ANo(ly,. ... I)NE C Ao, ..., In)NE.

We say that A' delayed & -refines A if for each sequence I, ..., I, of event
multi-sets with | J, |1;] C & there exists a number m > n such that for every
extension I1,..., I, of the sequence I,...,I,, we have

Ao, o Ln)NE C[Alio(1s ..., In)NE.

For & = Events and i = o = (), we say A’ (delayed) refines A if A’
(delayed) £-(i, 0)-refines A.

One can thus use the set of events £ in order to hide the events not
contained in it with respect to the refinement. This is inspired by the corre-
sponding operators in CSP [Hoa85] and CCS [Mil89] although not precisely
the same. It gives us more flexibility, as required by a practically applicable
notion of refinement, by allowing the events outside £ to change arbitrarily.

Example

Let R(0), R(1) be any two rules. The UML Machine B with the rule Rule B =
R(1) refines the UML Machine A with the following rule Rule A, assuming
that they have the same initial state:

choose b with b € {0,1} do
R(b)

This notion of refinement enjoys the usual structural properties one would
expect from a refinement relation.
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Fact 7.8. (Delayed) £-(i,0)-refinement of UML Machines is a preorder for
each set of events £ C Events and tuples i and o of input and output names.

We extend the definition of refinement to UMSs. Here we are interested
in a kind of white-box refinement that preserves the system structure, such as
the links between components and the scheduler. In that respect, this notion
of refinement is stricter than the “black-box” refinement between UML Ma-
chines Exec A generated from UMSs A, as we will show in Fact 7.10, but is
nevertheless useful in certain situations. We do not consider hiding in refine-
ment, as in the case of refinement of UML Machines. Variations are, however,
possible and may be useful in a given situation.

Definition 7.9 (Behavioral refinement of UMSs). A UMS A =
(Comp 4/, Sched 4, Links 4, Msgs 4,) is a (delayed) (i, 0)-refinement of a UMS
A = (Comp 4, Sched 4, Links4, Msgs 4) if Msgs, C Msgs 4, and if for each
C € Comp 4 there are bijections b : Comp_4 — Comp 4, and b¢ : Acty — Act{,‘}lc)
such that

e for each component C € Comp 4 and activity A € Act“c4, the UML Machine
of be(A) is a (delayed) (i, 0)-refinement of the A Machine where i = AttZ
and o = iU {finished 4}, and

e Schedy = Sched 4 and Links4 = Links s, each up to renaming of compo-
nents using the bijections b, bc.

We show that refinement of UMSs behaves well with respect to defining their
behavior using UML Machines. Here we only state this and the following
results for undelayed refinement. They also hold for delayed refinement, under
a suitable delay-invariance assumption on the UML Machines, but we do not
need this here.

Fact 7.10. If the UMS A’ is a refinement of the UMS A then the UML Ma-
chine Exec A’ is a refinement of the UML Machine Exec A.

If for UMSs A and A’, the UML Machine Exec A’ is a refinement of the
UML Machine Exec A, we also say that the UMS A’ is a black-boz refinement
of the UMS A. Next, the structural properties of UML Machine refinement
carry over to the UMS case.

Fact 7.11. Refinement of UMSs is a preorder.

We show that refinement of UMSs is preserved by substitution and is
thus a precongruence with respect to composition by system formation. A
parameterized UMS A (V1,...,Ys) is a UMS specification where n of the
component activities are replaced by variables Y, ..., YV,. For UML Machines
Ai, ..., A,, wedefine that 4 (Ay,..., A,) is the UMS obtained by substituting
in 4 the UML Machine A; for );, for each 1.
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Fact 7.12. Suppose we are given a parameterized UMS A (Y1, ...,Vn), where
the activity variable YV; belongs to the component C;, for eachi=1,...,n, and
that we are given UMSs A; and Aj for each i.

If for each i = 1,...,n, Exec A} is a (i;,0;)-refinement of Exec A;
where 1; = Atté and o; = 1; U {finishedgxec 4,} then A(ExecA],...,
Exec A)) is a refinement of A(Exec Ay,...,ExecA,).

We can summarize the above facts in the following theorem.

Theorem 7.13. Refinement of UMSSs is a precongruence with respect to com-
position by system formation using parameterized UMSs.

Next, we define what it means for two UMSs to be exchangeable, with
respect to their observable behavior.

Definition 7.14 (Behavioral equivalence). Two UMSs A and A" are (de-
layed) equivalent if A is a (delayed) refinement of A" and A’ is a (delayed)
refinement of A.

We can then extend the above theorem to this definition.

Corollary 7.15. Equivalence of UMSs is a congruence with respect to com-
position by system formation.

We provide a more flexible concept of refinement.

Definition 7.16 (Interface refinement). Given UMSs A and A’ and a
parameterized UMS Z(Y), A’ is a (delayed) T-interface refinement of A if A’
is a (delayed) refinement of Z(A).

This kind of refinement is again a preorder in a certain sense.

Theorem 7.17. Each UMS A is a Zd-interface refinement of itself, where
def

Zd(y) = ).
For all UMSs A, A', and A" such that A’ is a T-interface refinement of A

and A" is a T'-interface refinement of A', A" is a T' o T-interface refinement
def

of A, where T' o Z(Y) = T'(Z(Y)).

7.4 Rely-Guarantee Specifications

To reason about system specifications in a modular way, one may usefully
employ rely-guarantee specifications (also called assume/quarantee). The fol-
lowing definition follows a corresponding notion in [BS01].

Definition 7.18. Given a UML Machine A and sets R,G of sequences of
event multi-sets, we say that A fulfills the rely-guarantee specification (R,G)
if for any (I,...,I,) € R, we have [A]|(I1,...,I,) C G. A rely-guarantee
specification (R,G), where R is the set of all sequences of event multi-sets
accepted by A, is also called a trace property.
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We say that a set S of sequences of event multi-sets are stutter-closed if it
contains every sequence of events that is stutter-equivalent to a sequence in

S.

Theorem 7.19. Suppose that the UML Machine A fulfills the rely-guarantee
specification (R,G) where RNE = R and GNE = G, and suppose E = {1 :
InE =1}.

If the UML Machine A’ E-refines A and A’ fulfills the rely-guarantee spec-
ification (R, E) then A’ fulfills the rely-guarantee specification (R, Q).

If the UML Machine A’ delayed £-refines A, G is stutter-closed, and A’
fulfills the rely-guarantee specification (R, E), then A’ fulfills the rely-guarantee
specification (R, G).

In particular, the above theorem implies that (delayed) refinement preserves
(stutter-closed) trace properties. Note that we do not require R to be stutter-
closed; intuitively, the reason is that the above statement holds for each fixed
sequence of input event multi-sets.

7.5 Reasoning About Security Properties

We now use the notions from Sect. 3.3.3 in the context of security analysis
using UML machines. The notion of UMSs allows a rather natural modeling
of potential adversary behavior. We can model specific types of adversaries
that can attack different parts of the system in a specified way. For example,
an attacker of type insider may be able to intercept the communication links
in a company-wide local area network. We model the actual behavior of the
adversary by defining a class of UML Machines that can access the commu-
nication links of the system in a specified way. To evaluate the security of
the system with respect to the given type of adversary, we consider the joint
execution of the system with any UML Machine in this class. This way of rea-
soning allows an intuitive formulation of many security properties. Since the
actual verification is rather indirect this way, we also give alternative intrinsic
ways of defining security properties below, which are more manageable, and
show that they are equivalent to the earlier ones.

Security evaluation of specifications is done with respect to a given type
A of adversary. The capabilities of an adversary of a given type are captured
as follows.

Firstly, given a UMS A we recursively define the set cps 4 of contained
components:

e for a UML Machine A not associated with a UMS, we define cps 4 def

and
e for a UML Machine A associated with a UMS B, we define cps4 def

Compy U UCGCompB UAeActlg cps 4-
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Similarly, for a UMS A we define the set lks 4 of contained links:

e for a UML Machine A not associated with a UMS, we define lksy4 def

and
e for a UML Machine A associated with a UMS B, we define lks 4 def LinksgU

UCECompB UAEActg CPsa-

To capture the capabilities of an attacker, we assume that, given a UMS
A, we have a function threats’ (z) that takes an activity or link z € ¢ps 4 U
lks4 and a type of adversary A and returns a set of strings threats’ () C
{delete, read, insert, access} under the following conditions:

o for x € cps 4, we have threats? () C {access},

o for x € lks 4, we have threats’ () C {delete, read, insert}, and

o for | € Ilksyq with i € I and threats’(i) = {access}, the equation
threats’{ (1) = {delete, read, insert} holds.

The idea is that threats’ (z) specifies the threat scenario against a component
or link z in the UMS A that is associated with an adversary type A. On the
one hand, the threat scenario determines which data the adversary can obtain
by accessing components; on the other hand, it determines which actions the
adversary is permitted by the threat scenario to apply to the links concerned.
See Chap. 4 for examples of functions threats().

Then each function threats() gives rise to the set K4 C Exp of ac-
cessible knowledge which contains knowledge that may arise from accessing
components and is defined to consist of all expressions £ € Exp appear-
ing as initial values of attributes in the specification for any ¢ € cps 4 with
access € threats? (i).

Next, for an adversary type A, one has to specify a subalgebra K% C
Exp of previous knowledge of adversaries of type A. Then we define the set
KY% C Exp of the initial knowledge of any adversary of type A to be the
Exp-subalgebra generated by K% UK. Thus it is closed under application of
the algebra operations.

We now define the set Advers 4(A) of adversaries of type A against a UMS
A.

Definition 7.20. An adversary adv € Advers(A) of type A with previous
knowledge KY C Exp against the a UMS A is a UML Machine such that

e knows € Vocadv for a set name knows and Vocadv N Voc A =

{linkQu 4(1) : —threats? (1) C {access}},

at the initial state Init adv we have knows = KY as defined above, and

the transition rule Rule adv fulfills the following three conditions, where f

denotes the value of the name f before, and adv(f) the value after exzecuting

Rule adv:

- adv(knows) = (knowsU {E € Args(e) : e € Ureadethreatsj(l) linkQu 4 (1)),
where (S) is the Exp-subalgebra generated of a set S C Exp, as defined
in Sect. 3.5.3
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- adv(linkQu 4 (1)) C adv(knows) or linkQu4(1) C adv(linkQu4(1)) C
linkQu_4 (1) U adv(knows)

— delete ¢ threats’ (1) implies linkQu_4(1) C adv(linkQu_4 (1))

~ insert ¢ threats’i(I) implies adv(linkQu4(l)) = linkQu4(l) or
adv(linkQu 4 (1)) = 0

The intuition behind this definition is that an adversary may initially
know only the data contained in KY, arising from previous knowledge and
the data gained from accessing unprotected system parts. The adversary may
apply only those actions to the link queues which arise from the threats() sets
defined above. The definition accommodates the fact that an adversary A able
to remove all values sent over the link [, formalized as delete; € threats? (),
may not be able to selectively remove a value e with known meaning from [. For
example, the messages sent over the Internet within a virtual private network
are encrypted. Thus, an adversary who is unable to break the encryption may
be able to delete all messages indiscriminately, but not a single message whose
meaning would be known to the adversary.

The execution A4, of A in the presence of the attacker adv € Advers 4(A)
of type A is modeled by a UML Machine 4,4, such that

Voc Ay40 = Voc AU Voc adv,
the initial state Init A4, is defined as Init A, and in addition knows = KY,
and

e the transition rule Rule 4,4, is defined as the sequential composition

Rule 4,4, 4f Rule Exec A; Rule adv.

Suppose we are given a UMS A and an adversary adv € Advers4(A) of
type A. For any execution e € Run 4,4, of length n € N, as defined in
Sect. 7.1, we define the knowledge set K¢, (A) of expressions known to adv
after execution of e:

Kl (A) is the set K9 of initial knowledge defined above.

adv
’C%Z ("4) = (’ngv ('A) U Ureadethreatsj‘(l) hnki\a)) where h’nkil(l) is the set

of elements in the multi-set linkQu_4(!) in state e.
We have the following characterizations of the adversary’s capabilities.

Fact 7.21. Suppose we are given a UMS A, an adversary adv € Advers 4(A)
of type A, and an execution e € Run A,q,. Then after execution of e, knows
evaluates to K¢, (A).

We consider the overall adversary knowledge, which is simpler to han-

dle and often sufficient. The overall knowledge of expressions known to
any adversary adv of type A after n iterations of Rule A,q, is K% (A) def
Usdv.e Kody (A), where adv € Advers 4(A) ranges over all adversaries of type

A and e over all executions of A,q, of length n. We write K4(A) def

UneN ’C;LX(A)
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Note that the definition of K% (A) does not depend on any particular adver-
sary, only on the adversary type A. This allows one to give equivalent intrinsic
definitions for the security properties considered in the following subsections,
which simplifies reasoning.

Fact 7.22. Given a UMS A and an adversary adv € Advers 4(A) of type A,
the set knows of A4, evaluates to a subset of K4(A), at any point.

This means that, during the execution of A,4,, an adversary of type A will
get to know, and thus can add to a link only expressions in K¢, (A).
Suppose we are given a UMS A with a name v and an adversary adv €
Advers 4(A) of type A. For any execution e € RunA,g, of length n € N
of Aggv, we define the influence set 7°, (A,v) of expressions that may be

adv
written to v after execution of e:

Tt (A0) 0.
oi¢(A, v) is the union of Z%,, (A, v) and the value to which v evaluates at
state e.

We consider the overall influence set, which is simpler to handle and often

sufficient. The overall influence of any adversary adv of type A on a variable v

after n iterations of Rule A4, is 7% (A, v) def Usdv.e Lodo (A, v), where adv €

Advers 4(A) ranges over all adversaries of type A and e € Run A4, over all
def n
I%(A,v).

executions of Agq, of length n. We write Za(A,v) = U,,cn

Fact 7.23. Given a UMS A with a name v and an adversary adv €
Advers 4(A) of type A, then during any run e € Run A,g,, the name v eval-
uates to an element of Ta(A,v), at any point.

This means that, during the execution of A,4,, an adversary adv of type A
can only cause A to write to v expressions in Z4(A,v).

7.5.1 Refinement

When refining specifications, the concrete specification must have all relevant
properties of the initial specification. This is indeed the case for system prop-
erties that can be expressed as properties on traces, if one takes refinement
to be reverse inclusion on trace sets: A system A refines a system B is the
trace set of B is contained in the trace set of A. A classical example is the
Alpern—Schneider framework of safety and liveness properties [AS85].
However, many security properties proposed in the literature are properties
on trace sets rather than traces and give rise to the refinement problem,
which means that these properties are not preserved under many standard
definitions of refinement. For non-interference this is pointed out in [McL94,
McL96]; a similar situation arises when using these notions of refinement with
equivalence-based notions of secrecy explained for example in [Aba00]).
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For such properties, developing secure systems in a stepwise manner re-
quires one to redo security proofs at each refinement step. More worryingly,
since an implementation is necessarily a refinement of its specification, an im-
plementation of a secure specification may not be secure. Thus the results of
verifying such properties on the level of specifications need to be applied with
care, as pointed out in [RS98].

We show that our security notions, which follow a standard approach,
are preserved by the standard refinement operators defined in Sect. 7.3. To
understand the cause of the refinement problem and how to fix it, we first
give some background information on non-determinism and refinement.

In the specification of systems one may employ non-determinism in differ-
ent ways, including the following:

Underspecification: to simplify design or verification of systems. Certain de-
tails may be left open in the early phases of system development or when
verifying system properties, to simplify matters or because they may not
be known. An example could be the particular scheduler used to resolve
Concurrency.

Unpredictability: to provide security. For example, keys or nonces are chosen
in a way that should make them unguessable.

While the first kind of non-determinism is merely a tool during the develop-
ment or verification, the second is a vital part of the functionality of a system.
When one identifies the two kinds of non-determinism one faces the refinement
problem mentioned above.

We separate the two kinds of non-determinism in the following way. The
non-determinism of functional importance for the system is only modeled
by specific mechanisms. For example, key generation is modeled by having
separate sets of private keys for the different actors. Thus the security of a
system does not rely on non-deterministic choice in the formal model.

It is quite common with the formal modeling of security to provide spe-
cial primitives for operations such as key generation, encryption, etc. How-
ever, security properties for non-deterministic specifications often also use the
non-deterministic choice operators to provide unpredictability. Our security
property rules this out.

We note that our notion of white-box refinement of UMSs is preserved
by adding the adversary model, as defined above. To formulate this, we first
define a security-aware version of black-box refinement of UMSs.

Definition 7.24. The UMS B is a (delayed) (i,o0)-black-box refinement in
presence of adversaries of type A of the UMS A if for every adversary adv’ €
Adversg(A) there exists an adversary adv € Advers4(A) such that the UML
Machine Exec B,q, is a (delayed) (i,o0 U {knows})-refinement of the UML
Machine Exec A4y .

We can then formulate the result.
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Fact 7.25. Suppose we are given UMSs A and B such that B is a refinement
of A, and an adversary type A, such that the accessible knowledge for A in
B is no larger than that in A. Then the UMS B is a black-box refinement in
presence of adversaries of type A of the UMS A.

7.5.2 Secrecy

One possibility to specify security requirements is to define an idealized UMS
where the required security property evidently holds, for example, because
all links and components are secure according to the kind of adversary under
consideration. Then one proves that the analyzed UMS is behaviorally equiv-
alent to the idealized one, using Definition 7.14. An example for this approach
is given in Sect. 5.1.

In the following subsections, we consider ways of specifying important
security properties, which do not require one to explicitly construct such an
idealized system.

First, we consider a secrecy property following the standard approach of
[DY83] that is defined in an intuitive way by incorporating the attacker model,
and we give an equivalent internal characterization of the property which
allows easier verification. The secrecy property considered here relies on the
idea that a system specification preserves the secrecy of a piece of data d if
the system never sends out any information from which d could be derived,
even in interaction with an adversary.

Definition 7.26. Given a UMS A, we say that an adversary of type A
may eventually find out an expression E € Exp from A given inputs in
£ C Events if there ewists an adversary adv € Adverss(A), an input
sequence 1 whose multi-sets only contain elements in £, and a sequence
5 € [Aadvlo,{knows} (I) such that one of the knowledge sets in s contains E.
Otherwise we say that A preserves the secrecy of E from adversaries of type
A given inputs in E.

Given a variable v, we say that A preserves the secrecy of the variable v
from adversaries of type A given inputs in & C Events if for every expression
E which is a value of the variable v at any point, A preserves the secrecy of
E from adversaries of type A given inputs in &.

We say that A preserves the secrecy of E from adversaries of type A if A
preserves the secrecy of E from adversaries of type A given inputs in Events.

Note that, alternatively, one could formulate this definition using the
concept of a “most general adversary” defined in Sect. 3.3.4 which non-
deterministically behaves like any possible adversary of the given type.

Ezxamples

e The UML Machine that sends the expression {m}x :: K € Exp over an
Internet link does not preserve the secrecy of m or K against attackers
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eavesdropping on the Internet, but the UML Machine that sends {m}x
and then terminates does, assuming that it preserves the secrecy of K
against attackers eavesdropping on the Internet.

e The UML Machine A that receives a key K encrypted with its public key
K 4 over a communication link and sends back {m} k over the link does not
preserve the secrecy of m against attackers eavesdropping on and inserting
messages on the link, because such an adversary can insert {Ko}x , for a
key K¢ known to him into the communication to A and then decrypt the
message {m}g, received back. A does preserve the secrecy of m against
attackers that cannot insert messages on the link.

More substantial examples can be found in Chap. 5. We give an intrinsic
characterization of preservation of secrecy in terms of knowledge sets, which
makes it easier to verify.

Theorem 7.27 (Secrecy Characterization). A UMS A preserves the se-
crecy of E against adversaries of type A if and only if E ¢ Ka(A).

There is a similar characterization of preservation of secrecy given inputs in
&, which, however, we will not need in the following.

This theorem is especially useful if one can give an upper bound for K 4 (A),
which is often possible when the security-relevant part of the specification of
A is given as a sequence of commands of the form await event e — check
condition g — output event €'. For example, this is the case when using UML
sequence or statechart diagrams together with their UML Machine semantics
defined in Chap. 8.

We now consider in how far this secrecy property is preserved by refinement
in our setting. First, we consider white-box refinement of UMSs.

Theorem 7.28 (Secrecy Preservation by White-Box Refinement). If
the UMS A preserves the secrecy of E from adversaries of type A and the
UMS B (delayed) refines A, such that the accessible knowledge for A in B is
no larger than that in A, then B preserves the secrecy of E from adversaries
of type A given inputs in E.

This result also carries over to black-box refinement of UMSs.

Theorem 7.29 (Secrecy Preservation by Black-Box Refinement). If
the UMS A preserves the secrecy of E from adversaries of type A and the
UMS B is a black-box refinement in presence of adversaries of type A of the
UMS A then B preserves the secrecy of E from adversaries of type A.

Intuitively, these results hold because the definition of preservation of se-
crecy refers to the ezxistence of an output sequence revealing E, and the pos-
sibility of this existence is decreased by refinement.



184 7 A Formal Foundation
7.5.3 Integrity

We now formalize that definition that a system preserves the integrity of a
variable if there is no adversary such that at some point during the execution
of the system in presence of the adversary, the variable has a value different
from the ones it should have.

Definition 7.30. Suppose we are given a variable v in a UMS A and a set
E C Exp of acceptable expressions. We say that an adversary of type A
may eventually violate integrity of the variable v in A with respect to E, given
inputs in & C Events, if there exists adv € Advers 4(A) and an input sequence
1 whose multi-sets only contain elements in &, such that at some point of the
execution of Aguqu on the inputs i, v takes on a value not contained in E.
Otherwise we say that A preserve the integrity of v with respect to E from
adversaries of type A given inputs in €. If E = Exp \ K°, we simply say that
A preserves the integrity of v from adversaries of type A.

The idea of this definition is that .4 preserves the integrity of v if no adver-
sary can make v take on a value different from the ones it is supposed to
have, in interaction with A. Intuitively, it is the “opposite” of secrecy, in the
sense that secrecy prevents the flow of information from protected sources to
untrusted recipients, while integrity prevents the flow of information in the
other direction. Again, it is a relatively simple definition, which may, however,
not prevent implicit flows of information. Examples for this security property
are given in Chap. 5.

For simplified verification, we give a sufficient condition for preservation
of integrity in terms of influence sets.

Theorem 7.31 (Integrity Characterization). Each UMS A preserves the
integrity of a variable v with respect to a set E C Exp of acceptable expressions
against adversaries of type A if Ta(A,v) C E.

To derive a preservation result for integrity, we need to refine with respect
to the variable that is supposed to be protected.

Theorem 7.32 (Integrity Preservation). Suppose we are given UMSs A
and B. Suppose that A preserves the integrity of v with respect to a set E C
Exp of acceptable expressions from adversaries of type A given inputs in £ and
that the UMS B is a (0, {v})-black-box refinement in presence of adversaries
of type A of the UMS A. Then B preserves the integrity of v with respect to
E from adversaries of type A given inputs in E.

A similar result can be achieved for white-box refinement. Intuitively, these
results hold because the definition of preservation of integrity refers to the
existence of an execution corrupting v, and the possibility of this existence is
decreased by refinement.
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7.5.4 Authenticity

We now formalize our notion of message authenticity, which is supposed to
secure the information on the message origin.

Definition 7.33. Suppose we are given variables v and o in a UMS A, where
0 is supposed to store the origin of the message stored in v. We say that A pro-
vides (message) authenticity of v with respect to its origin o from adversaries
of type A given inputs in & C Events if for all adv € Advers4(A) and each
input sequence 1 whose multi-sets only contain elements in &, at any point of
the execution of Agqy on the inputs i, v takes on a value which appeared first
within the execution in outQu,, of all output queues and link queues in A.

The idea of this definition is that 4 provides authenticity of v with respect to
its origin o if no adversary can make v take on a value not originating from
o, in interaction with A. Examples can be found in Chap. 5.

We can derive a preservation result for authenticity similar to that for
integrity.

Theorem 7.34 (Authenticity Preservation). Suppose we are given UMSs
A and B. Suppose that A provides authenticity of v with respect to its ori-
gin o from adversaries of type A given inputs in € and that the UMS B is a
(B, {v, 0})-white-box refinement of the UMS A, such that the accessible knowl-
edge for A in B is no larger than that in A. Then B provides authenticity of
v with respect to its origin o from adversaries of type A given inputs in E.

A similar result holds for black-box refinement. We recall that message au-
thenticity is closely related to data integrity, as discussed in Sect. 3.3.5.

7.5.5 Freshness
We define freshness of data for UMSs.

Definition 7.35. An atomic value d € Data U Keys in a UMS A is fresh
within a component D contained in A if the value d appears in the specification
A only within the specification of D. In this case, we also say that the scope
of d is contained in D.

See Chap. 5 for examples of this security requirement. To support this
definition, we note that our formal model captures the fact that security-
critical data such as keys and nonces are usually assumed to be independent;
that is, that no equations should hold between them from which an adversary
could derive information, such as K = K’ + 1 for two different keys K, K' €
Keys. This follows from the fact that the algebra of expressions is the quotient
of a free algebra under the equations given in Sect. 3.3.3, in particular, only
equations that follow from these equations hold in Exp. We will make this
more precise.
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Definition 7.36. An expression E € Exp is independent of a set of expres-
sions € C Exp if E is not an element of the subalgebra of Exp generated by
E.

We establish some simple facts about this definition with regard to atomic
expressions, which we call those in DataU Var UKeys. For this, we first need
an additional definition regarding such expressions.

Definition 7.37. An ezpression E € Data U Var U Keys is a subexpression
of an expression E' € Exp if for each term t' over the operations in Exp that
evaluates to E' when interpreted in Exp, the unique term t € Data U Var U
Keys which evaluates to E in Exp is a subterm of t'.

For example, E € Data is a subexpression of {E}x: Any term ¢’ which
evaluates to {E}k has E as a subterm, because none of the equations which
define Exp in Sect. 3.3.3 would eliminate E from {E}gx. E € Data is
not a subexpression of head(E' :: E) for E' € Data with E' # E, since
head(E’ :: E) = E' by definition in Exp, and E is not a subterm of E’ since
both are atomic and E' # E.

Fact 7.38. For any expression E € Data U Var U Keys and any set of ex-
pressions £, E is independent of £ if there exists no expression E' € £ such
that E is a subexpression of E'.

Note that the converse does not hold: For example, E € Data is indepen-
dent of and also a subexpression of {E} k.

Fact 7.39. For any expression E € Data U Var U Keys and any set of ex-
pressions € C Data U Var U Keys, E is independent of £ if and only if
E¢¢.

Thus it is sufficient to require of fresh values that they do not appear in
the UMS specification A outside their scope D, as in Definition 7.35, because
by Fact 7.39, they are then independent of all atomic values outside of D in
A.

Note also that a value d that is fresh within a component D in the UMS
A appears as a subexpression in the trace of messages exchanged within A
only after it has been sent out by D as a message argument:

Fact 7.40. Suppose we are given an atomic value d € Data U Keys in a
UMS A which is fresh within a component D contained in A, an adversary
type A which does not have access to D and does not have d in its set K% of
previous knowledge, and an adversary adv of type A. Then during any run
e € RunA,y,, if at any state S in e an output or link queue outside D
contains d as a subexpressions, then there exists a state S’ preceding S in e
where outQup contains d as a subexpressions.

Here the restriction on the adversary is necessary: if the adversary had access
to the component containing the fresh value, or would know the fresh value
from the start, he could inject it into a link queue outside this component
before it is sent out by the component.
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7.5.6 Secure Information Flow

We explain an alternative way of specifying secrecy- and integrity-like require-
ments, which gives protection also against partial flow of information, but can
be more difficult to deal with, especially when dealing with encryption.

Given a set of message names H C MsgNm and a sequence m of event
multi-sets, we write:

e m" for the sequence of event multi-sets derived from those in m by delet-
ing all events the message names of which are not in H, and

e my for the sequence of event multi-sets derived from those in m by delet-
ing all events the message names of which are in H.

Definition 7.41. Given a UML Machine A and a set of high message names
H C MsgNm, we say that:

e A prevents down-flow with respect to H if for any two sequences i,j of

event multi-sets and any two output sequences o € [A](1) and p € [A](),

i = jg implies og = pm, and
e A prevents up-flow with respect to H if for any two sequences 1,j of event

multi-sets and any two output sequences o € [A](i) and p € [A](), if =

jH implies ol = pH.,

Intuitively, to prevent down-flow means that outputting a non-high (or
low) message does not depend on high inputs. This can be seen as a secrecy re-
quirement for messages marked as high. Conversely, to prevent up-flow means
that outputting a high value does not depend on low inputs. This can be seen
as an integrity requirement for messages marked as high. Examples for the
use of this security requirement can be found in Sect. 4.1.2.

This notion of secure information flow is a generalization of the origi-
nal notion of non-interference for deterministic systems in [GM82] to non-
deterministic systems. Many such generalizations have been proposed in the
literature; the current one is motivated by the fact that it should be preserved
under refinement. Essentially, a UML Machine prevents down-flow if and only
if each refinement to a deterministic UML Machine satisfies non-interference.
Recall that we use non-determinism for underspecification, rather than for a
functional kind of non-determinism that should still exist on the implementa-
tion level. Thus a non-deterministic specification of a system that may output
any value to the untrusted environment is not seen to prevent down-flow,
because a legal implementation of it may output low messages that depend
on high inputs. If instead one wanted to model “functional” (or possibilistic)
non-determinism, the current definition might turn out to be rather strong.

We show that this formulation of secure information flow is also preserved
under refinement. This, again, is possible since non-determinism is supposed
to represent underspecification, while security-providing non-determinism is
modeled through the generation of random values (such as keys). Note that
computers currently in use are in fact deterministic, apart from special com-
ponents that produce such random values.
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Theorem 7.42 (Secure Information Flow Preservation). Suppose that
the UML Machine A prevents down-flow (resp. up-flow) with respect to the
set H C MsgNm and that the UML Machine B refines A. Then B prevents
down-flow (resp. up-flow) with respect to H.

Note that secure information flow is not preserved under delayed refine-
ment, since an introduced time delay may be used to leak information.

7.6 Notes

UML Machines have been introduced, under a different name, in [Jiir02a,
Jir02d]. The idea of defining UML Machines with input and output queues is
similar to that of Algebraic State Machines [BW00, Jiir03a] which are in turn
based on a mathematical foundation of reactive systems and software engi-
neering methods proposed in [Bro00, Bro01, BS01]. In particular, the notions
of refinement and rely-guarantee specifications defined here are inspired by
those in [Bro97, Bro98]. More on refinement of state machines can be found
in [PR94, Rum96].

A notion of “interacting ASMs” similar to UML Machines has been in-
troduced in [MIB98, Sch98], but without the possibility to construct ASM
specifications in the same way as using UML Machine Systems.

Security notions were introduced into our formal framework in [Jiir03a].
The preservation of secrecy by refinement was proved, in a similar formal
model, in [Jiir0lg]. Preservation of secrecy and secure information flow by
composition was proved in [Jiir00, Jir01b]. This had to be omitted here.

There has been extensive related research in using formal models to verify
secure systems. An overview of some approaches is given in Chap. 9. Here
we just mention some results related to the ones presented in this chapter.
[Sch96] gives a confidentiality property preserved under refinement. However,
cryptographic primitives are not considered and it is pointed out that their
treatment may be less straightforward. [HPSO01] gives a necessary and suffi-
cient, condition for a notion of confidentiality to be preserved under refine-
ment in a probabilistic extension of CSP. [SHP(02] considers compositionality.
For a discussion on the refinement of secure information flow properties, see
[GCS91, Mea92, McL94, McL96]. [RWW94] avoids the “refinement problem”
by giving a security property that requires systems to appear deterministic to
the untrusted environment. Special refinement operators that preserve infor-
mation flow security are considered for example in [Man01]. Compositionality
is considered in [Man02].

The problem of how far formal models of cryptography are faithful to
computational models is considered in [AJ01]. Similar investigations regarding
failure probabilities in the setting of safety-critical systems are presented in
[Jiir01a].
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7.7 Discussion

We introduced formal models, UML Machines and UML Machine Systems,
to model the interaction between a system and its environment and to con-
struct specifications in a modular way. In Chap. 8, they will be used to define
a formal semantics for a simplified fragment of UML. This semantics in turn
is the basis for the analysis routines in the UMLsec tool support presented in
Chap. 6, which allows us to reach general insights about the properties checked
by the tool, such as preservation under refinement. Also, we defined notions of
refinement and rely-guarantee specifications for UML Machines, allowing step-
wise and modular development, as demonstrated in Chap. 5. Rely-guarantee
specifications were showed to be preserved under refinement.

We explained how we use UML Machines to specify security-critical sys-
tems, exploiting the fact that UML Machine Systems are designed to allow
the treatment of external influences on the system beyond the planned inter-
action. This allows a rather natural modeling of potential adversary behavior
that specifies which parts of the system are assumed to be accessible to an
adversary in which way. The adversary behavior is again modeled by a class
of UML Machines with the specified capabilities. This gives us an evaluation
of the system’s security in a natural way, by considering the joint execution of
the system with any UML Machine in this class. Security properties can thus
be formalized intuitively. To support verification, we gave alternative ways of
defining these security properties that do not refer to particular adversaries
and proved them to be equivalent to the earlier formulations.

We addressed a formerly open problem in the formal development of
security-critical systems, namely the so-called refinement problem: we showed
security properties to be preserved under refinement in our formal framework.
Thus one can use stepwise development of security-critical systems without
having to redo security proofs at each refinement step. Also, this result may
increase the confidence that an implementation conforming to a verified spec-
ification, which is necessarily a refinement of it, is also secure. The security
properties and the refinement relation are defined in a standard way, avoiding
definitions specially tailored to avoid the refinement problem.
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Formal Systems Development with UML

We use UML Machines and UML Machine Systems to give a formal semantics
for a simplified part of UML to enable advanced tool support for UMLsec. It
allows one to use subsystems in a specific way to group together several kinds
of diagrams, giving a formal semantics of a simplified version of UML subsys-
tems and their interactions. Objects, or system components, can communicate
by exchanging messages with parameters, which can be used in the subsequent
execution. The behavior of actions and activities can be modeled explicitly.
Since our semantics builds on UML Machine Systems, it allows us to make
use of the treatment of security-critical systems in Chap. 7 to evaluate UML
specifications for security aspects. We give consistency conditions for different
diagrams in a UML specification. We define notions of refinement and behav-
ioral equivalence, and investigate structural properties, such as substitutivity.
Finally we consider rely-guarantee properties for UML specifications and their
structural properties.
The proofs for the statements in this chapter are given in Appendix C.

8.1 Formal Semantics for a Fragment of UML

The semantics of UML is given only in prose form [UMLO03], leaving room
for ambiguities. This is a problem especially when providing tool support or
trying to establish behavioral properties of UML specifications. To reason
about system behavior in a precise way, however, we need a precise semantics
for the behavioral model elements of UML.

There has been a considerable amount of work to generally provide a for-
mal semantics for UML, see Sect. 8.3 for a partial overview. To use UML
for critical systems development, we need a semantics that, more specifically,
supports different views of a system on the syntax level, including its logical
structure, its physical environment including attack scenarios, and its behav-
ior. At the same time, the semantics should be sufficiently simple to allow its
use for mechanical reasoning.
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We provide a formal semantics for a simplified part of UML that allows
one to use a restricted version of UML subsystems to group together several
diagrams. It is formulated using UML Machines. The statecharts semantics
builds on part of the statechart semantics from [BCR00]. The formal semantics
for subsystems incorporates the formal semantics of the diagrams contained
in a subsystem. Actions and internal activities are modeled explicitly, rather
than treating them as atomic given events. They are executed explicitly, for
example, by assigning new values to attributes. In particular, objects, or sys-
tem components, can communicate by exchanging messages with parameters,
which can be used in the subsequent execution. We show how to compose our
subsystems by including them in other subsystems. To our knowledge, this is
the first published formal semantics of UML subsystems, the contained dia-
grams, and their interactions. Our aim is to provide a sound foundation for
the tool support presented in Chap. 6.

Note that we only consider a simplified fragment of the UML syntax. In
particular, the notion of subsystem considered here is restricted, for example,
in the kinds and numbers of diagrams that may be contained. Also, following
[KWO1, p. 15], we do not model the creation and deletion of objects explicitly.
A sufficient number of required objects are assumed to exist at the start of
the execution. The activation of objects is controlled by the activity diagram
in the subsystem. An object that reaches a final state within its top state
is terminated, and may be reactivated. Note that is has been argued that
the explicit modeling of the creation and destruction of objects could lead to
unbounded behaviors that would be impossible to verify automatically for ex-
ample with a model-checker [LP99]. Furthermore, in our approach, we identify
the objects in the runtime system with UML objects. We thus aim to provide
an executable semantics for UML models to allow simulation. We feel that,
although non-executable specifications also have their value, simulatability of
a model can be of value for use in industrial practice, because it may assist
understanding. See [Rum02] for a supporting discussion. Also, our main goal
for providing a formal semantics is the use for security analysis of UML mod-
els, and some of the security properties considered later refer to an execution
trace of the model. However, code generation of the models is not our goal
here and we do not aim to propose a visual programming language.

One should also note that the semantics does not attempt to support
simultaneous modeling of several overlapping aspects of the system behavior in
different parts of the UML model. That is, in our approach, at any one time the
behavior of a given thread of an object is represented by only one diagram. For
example, our semantics enforces that different statecharts contained in a UML
specification are always mapped to disjoint state sets of distinct sub-state
machines of the overall semantics. This way our approach sidesteps questions
that would arise from having different parts of a UML specification model the
same part of the system behavior, which are interesting but beyond the scope
of the current treatment.
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However, the semantics provides a possibility to check whether such over-
lapping aspects are consistent: by creating two separate models which are iden-
tical apart from the non-overlapping parts and then establishing whether they
are behaviorally equivalent using the corresponding definition in Sect. 8.2.1.

There are further simplifications whose explanation requires more detailed
knowledge of the diagrams and which therefore will be explained in detail in
the respective sections. The simplifications were done because of space restric-
tions and to increase readability. The semantics can be extended with other
parts of the notation that have to be omitted here. Note that, since UML is a
rather large and complex notation, a full formalization of all of the notation
may be neither desirable not feasible. Since our main motivation is to pro-
vide sophisticated tool support using automated theorem provers and model-
checkers to automatically analyze the specifications for security requirements,
we also have to take into account the efficiency of the analysis, which is greatly
improved when having a reasonably simple notation. Thus, we concentrate on
those features of the UML notation which are really needed for our purposes.
Developers who may already know UML could be taught relatively easily to
use only a fragment of UML, rather than having to be taught a completely
different notation. Our approach is in accordance with the view seeing UML
as a “family of languages” [Coo00], each for a specific purpose, such as tool
supported validation, but sharing a common core. To demonstrate that our
choice of a subset of UML is reasonable for our present needs and our seman-
tics of sufficient interest, we presented several case studies in Chap. 5 which
only make use of those parts of UML whose semantics is defined here. Some
of these originate from an industrial context and are therefore realistic in size
and complexity. Thus they may demonstrate that the fragment of UML used
in our work seems to be sufficient for our needs.

Since our semantics uses UML Machines and UML Machine Systems de-
fined in Chap. 7, it allows us to make use of the treatment of security-critical
systems there. In particular, UML specifications can be evaluated using the
attacker model from Sect. 7.5, which incorporates the possible attacker be-
haviors, to find vulnerabilities. Thus our semantics defines a solid foundation
for the automatic analysis presented in Chap. 6 of the constraints for the
UMLsec stereotypes defined in Chap. 4. For the trivial kind of adversary who
is not able to access any part of the system, our approach gives us the usual
simplified UML semantics without security considerations.

Diagrams

Our formal semantics includes simplified versions of the following kinds of
diagrams: static structure diagrams (which are class or object diagrams that
may also contain subsystems), statechart diagrams, sequence diagrams, activ-
ity diagrams, deployment diagrams, and subsystems.

The semantics for statecharts presented here is based on part of [BCR00],
which, however, had to be extended to incorporate features such as explicit
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modeling of the passing of messages with their arguments between different
objects or components, and use of the arguments in the subsequent execution.

Consistency

We give some conditions for consistency between different kinds of diagram
in a UML specification, such as static versus behavioral diagrams.

Refinement

In UML, refinement denotes a certain kind of dependency relation between
model elements [UMLO03, p. 2-18]. There is no constraint on the semantic re-
lationship between the model elements, also not in the heuristics for state
machine refinement on [UMLO03, p. 2-172]. When trying to establish system
properties, behavioral conformance of refinement can help to save effort: Prop-
erties may be easier to establish at a more abstract level, and preservation by
refinement means that this is in fact sufficient.

We aim for a trade-off between flexibility of a refinement relation and
the gain from establishing that a specification refines another by considering
two kinds of refinement for UML specifications. The first of these, property
refinement, provides full behavioral conformance, and thus preserves all safety
properties. The second, interface refinement, allows some degree of control
over the extent to which the structure and behavior of the system is preserved.
Both were inspired by notions of refinement in [BS01]. For both kinds of
refinement, we define a relaxation, called delayed refinement, that allows time
delays to be introduced during refinement.

FEquivalence

We define a notion of behavioral equivalence between UML specifications.
This can be used for example to verify the consistency of two of our kinds of
subsystem specifications that are supposed to describe the same behavior, one
of which uses statecharts to specify object behavior, and the other sequence
diagrams.

Rely-Guarantee Specifications

Finally, we consider rely-guarantee specifications, following the definitions in
Sect. 7.4, in the setting of UML and prove some results regarding them.

8.1.1 General Concepts

Note that there are some aspects that are omitted in the following simply
because they are not used in the sequel, such as associations in class diagrams,
and which one should be able to add in easily. Generally, for our present needs
it is sufficient to remain on the instance level, as for other non-functional
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requirements [Wat02, sl. 4]. In fact, emphasizing the type rather than the
instance level can lead to security problems, as pointed out in [LGSO01] for
CORBASec.

For our intended use in security analysis, we only need the abstract syntax
of the static modeling elements given below, while for the behavioral diagrams,
we need an execution semantics. The abstract syntax of the structural dia-
grams is needed to define the formal semantics of subsystems containing them,
because the execution semantics depends on it.

The UML specification document [UMLO03] gives the abstract syntax of the
UML notation using a fragment of the UML notation. The logical cycle arising
from this could be avoided by giving a separate definition of the abstract
syntax of that fragment. For simplicity, we define the abstract syntax of the
fragment of UML we use entirely in basic set-theoretical terms.

In our approach, we view an object or component as an entity characterized
by a unique name. It may have associated information such as its attributes
and their values which may change during its execution, for example specified
as a statechart. Thus we identify the objects or components in the runtime
system with UML objects or components. Thereby, we aim to provide an
executable semantics for a simplified kind of UML models. Note that in more
general use of UML, the relation between UML objects and system objects
may not be functional in either direction.

Objects, or system components, can communicate by exchanging messages.
These consist of the message name and possibly arguments to the message,
which are assumed to be elements of a set Exp. Message names may be
prefixed with object or subsystem instance names, analogous to the names of
UML Machines or UMLSs as defined in Sect. 7.1.

Messages can be synchronous or asynchronous. The sender of a syn-
chronous message passes the thread of control to the receiver and receives
it back together with the return message. When sending asynchronous mes-
sages, the thread of control is split in two, one each for the sender and the
receiver, unless they already had separate threads of control. Exchanging a
synchronous (resp. asynchronous) message is called “calling an operation”
(resp. “sending a signal”). Accordingly, in Sect. 7.2 we partitioned the set of
message names MsgNm into sets of operation names Op, signal names Sig,
and return message names Ret.

Note that the UML specification in some parts makes a distinction between
the term “Stimulus” and the term “Message”, which is “a specification of
a Stimulus” [UMLO03, 3.63.1]. However, in other places distinction is again
removed or blurred:

e Firstly, in the case of the usage of “message name”: According to [UMLO03,
3.72.2.5], a message name is “the name of the Operation to be applied to
the receiver, or the Signal that is sent to the receiver”.

e Secondly, the glossary defines:
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— receive (a message): The handling of a stimulus passed from a sender
instance.

— send (a message): The passing of a stimulus from a sender instance to
a receiver instance.

To avoid confusion, we do not use the term “Stimulus” at all, but use the
term “message” (or “message instance” for emphasis) to denote the actual
message that is exchanged (as in Sect. 7.2), and “message specification” for
the specification of a message.

An event is “the specification of a significant occurrence that has a location
in time and space” [UMLO03, p. Glos.-7]. Here we consider the events arising
from the reception of an operation call or a signal. Accordingly, in Sect. 7.1
we defined the set Events to consist of messages msg*™¢(exp,,...,exp,) for
msg € MsgNm, snd = nq = ... ng with ny,..., ny € UMNames, and
exp;, € Exp. In our model, every object or subsystem instance O has asso-
ciated multi-sets inQup and outQup (event queues). As explained in detail
in Sect. 7.2, our formal semantics using UMLSs models sending a message
msg = op(expy, ..., exp,) € Events from an object or subsystem instance S
to an object or subsystem instance R as follows:

(1) S places the message instance R.msg into its multi-set outQusg.

(2) The “virtual machine” Exec A for a UMS A defined in Sect. 7.2 dis-
tributes the message instances from output queues to the intended input
queues, while removing the message head. In particular, R.msg is removed
from outQug and msg added to inQug.

(3) R removes msg from its input queue and processes its content.

In the case of operation calls, we also need to keep track of the sender to allow
sending return signals. As defined in Sect. 7.2, this is done by associating the
sender name as a superscript of the name of a message instance.

This way of modeling communication allows for a relatively flexible treat-
ment. For example, we can modify the behavior of the scheduler to take ac-
count of knowledge of the underlying communication layer, such as regarding
security or performance issues.

Note that messages with the same name and possibly the same arguments
can appear several times at different places in a UML specification. As men-
tioned above, our semantics does not attempt to support overlapping model
parts. Whenever two such messages are sent during a given model execution,
they are interpreted as two different message instances created by distinct sys-
tem events, namely the corresponding method called by the calling objects.
They are later also consumed by distinct system events: the events in the
UML sense at the called objects. Thus, whenever a message instance is sent
in a UML model, our semantics models this by adding a new element to the
outQu multi-set, as explained above. This directly implies that, conversely,
for any element of an input or output queue, there is a unique occurrence
of this message instance in the UML model from which it originates. Thus,



8.1 Formal Semantics for a Fragment of UML 197

in our approach, at each point of a given execution of a system, the same
message instance in the running system is only represented once in the UML
diagrams, and hence only once in our semantics. More concretely, each time
an expression call(msg) or send(msg) appears as an action in a statechart
diagram, or a message msg appears at a connection in a sequence diagram
that is “executed”, it is interpreted as a different message instance, which
may happen to have the same name and the same arguments as a previous
message instance. Thus, this message instance is newly added to the output
queue using the macro tooutQu(), as we will define in Sects. 8.1.3 and 8.1.4.
Since these are the only ways message instances are introduced during the
execution of a model, this ensures that a message instance appears only once
in the semantics, by definition.! This observation is presented in more detail
in Fact 8.1.

The mechanism for handing on the message instances explained above is
performed locally at the subsystems and objects. Where it will be sent depends
on its place and on the relative addressing of the recipient. For example,
assume we have subsystem instances S (resp. S') each with objects S and R.
Then the object S.S (resp. S'.S) may each be specified to send the message
instance R.msg. For example, this could be done in two different statecharts
contained in S (resp. §'). Then the message instance msg sent by S.5 will
be delivered to S.R, while the message instance msg sent by S&’.S will be
delivered to S'.R.

We model a synchronous operation call by sending two asynchronous sig-
nals — the message and its return value. By imposing restrictions on state-
charts and sequence diagrams in the respective sections, we can model the
passing of control implicitly. The semantics does keep track of the sender of
a synchronous operation, so that the return message can be delivered.

Note that an object may receive several synchronous messages calling the
same operation op before sending back a corresponding return value. To enable
sending back the return value to the sender, the statechart and sequence
diagram semantics include last-in—first-out buffers containing the names of
the senders of the message calls, assuming that the calls and their returns
are “well-bracketed” in a sense detailed below. On the level of the semantics
using UMSs, the sender names are attached to the messages sent, as defined in
Sect. 7.2. When return messages are sent out, the recipients of these messages
are taken from that buffer.

The situation when an object’s statechart invokes another object’s oper-
ation, with the called object calling others and so on until this leads back
to the same thread of the first object instance, is called an invocation cycle.
Such as cycle is not permitted, an attempt to execute it will result in dead-
lock, similar to the treatment in [HG97]. This restriction seems to be inherent

! This might be compared to abstraction in the lambda-calculus, where one may
have two appearances of the same variable on the syntax level, which, however,
evaluate to different entities on the semantics level.
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in the current UML run-to-completion semantics, as pointed out in [TS02].
Instead, one may call another thread of the first object, or another instance
of the relevant class, with the needed data. Details and discussions are given
in Sects. 8.1.3 and 8.1.4.

Note also that there is only one input buffer and one output buffer for
a given object or component. This buffer may be accessed in various ways
— for example, concurrent substates of a statechart diagram read from the
same input buffer and write to the same output buffer. That this happens
consistently is ensured by the semantics. For example, the execution of the
internal activities of concurrent substates is defined interleavingly in Fig. 8.2.

The UML semantics includes some semantic variation points to allow ad-
justing the semantics to a given application domain. For example, the order
of dequeuing events at an object or component is not defined. Similarly, in
the case of statechart diagrams, the order in which enabled transitions are
executed is left open, except that transitions with innermost source states
have highest priority (see Sect. 8.1.3 for an explanation of these concepts). In
both cases, we use the non-deterministic choice operator of UML Machines to
determine the order. The intention here is to not prejudice any view over what
the UML specification document prescribes. By using the non-deterministic
choice operator, it is made sure that in our use of the formal semantics for
formulating our concepts regarding security, we do not make use of any addi-
tional properties in our semantics that are not specified in the UML specifi-
cation document regarding this issue, such as a partial specification of order.
Otherwise, this might lead to problems when using our ideas with a different
semantics. When implementing this semantics in the form of a tool, either this
non-determinism could be preserved by giving a probabilistic interpretation,
in order to keep designers using the tool from making use of any specified or-
der. Alternatively, one could refine the non-deterministic choice operator by
an operator determining any kind of choice based on the situation at hand.
Thus, by using the non-deterministic choice to determine the order, we are
covering all possibilities of choosing an order, so that the results based on our
definitions will automatically cover all such more detailed elaborations.

Note also that we follow the UML specification in that we do not make
any fairness assumptions on the input queue of an object. Thus dispatching
an event can be delayed indefinitely provided the event queue contains more
than one event at each point during the execution. This could be changed
easily, for example, by taking the event queue to be a list.

Objects may have attributes, which are variables that are local to the object
and whose names are given in the set Attribute C Var UKeysUData. Here
the names in KeysUData denote constant attributes with the same value. We
will not consider situations where changing attributes may lead to unexpected
side-effects, such as changes to object references. We assume that attribute
names are only used for attributes and that the attributes of an object can
only be changed by the object itself. They can only indirectly be changed by
other objects, namely through sending messages. This is important not only
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for a clean software engineering, but also from the point of view of security,
as explained in Sect. 3.1.

Each element in Var has an associated UML Machine variable with the
same name which represents it on the semantics level, by storing assigned
values. Initially, all variables are set to the value undef.

An action is “the specification of an executable statement that forms an
abstraction of a computational procedure. An action typically results in a
change in the state of the system” [UMLO03, p. Glos.-2]. We consider the
actions sending a message to an object or component and modifying the value
of an attribute. Thus actions and events are related in that the execution of
an action at one object may or may not cause the occurrence of an event at
another object. We write Action for the set of actions which are expressions
of the following forms:

Call action: call(op(as,.-.,ay)) for an n-ary operation op € Op and expres-
sions a; € Exp, called the arguments of op.

Send action: send(sig(ay,...,a,)) for an n-ary signal sig € Sig and argument
a; € Exp.

Return action: send(return,,(a)) for an operation op € Op with return value
a € Exp.

Assignment: att := exp where att € Attribute is an attribute and ezp is a
term evaluating to an expression in Exp.

Void action: nil.

Before we define the semantics of these actions in terms a UML Machine,
we need an additional binary function sender_() in its vocabulary. Given a
parameter S, such as the state in a statechart diagram, and a synchronous
operation op, the function senderg(op) returns the list of previous senders of
op which are needed when sending back return messages. The parameter S
allows parallel processing of several operations with the same name. We define
the following syntactic shortcut for sending back return messages, where A is
a UML Machine, op € Op, and S is a parameter.

retMsg 4 s(op) = if sender(S, op) # [] then
tooutQu 4 ({head(sender(S, op)).return,, (args) } );
sender(S, op) := tail(sender(.S, op))

Then for any action a executed at an object or component O and for a
parameter S, we define the expression ActionRuleg(a),where op € Op and
msg € Sig:

Call action: ActionRuleg(call(op(args))) = tooutQup ({opl(args) })
Send action: ActionRuleg(send(msg(args))) = tooutQue ({msgl!(args) } )
Return action: ActionRuleg(send(return,,(args))) = retMsgg s(op)
Assignment: ActionRuleg(att := exp) = att := exp

Void action: ActionRuleg(nil) = skip
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Note that in our usage of these rules to define a formal semantics for a
simplified fragment of UML statecharts and sequence diagrams below, the
assumption is that whenever a rule ActionRuleg(a) for a call or send action
a is fired during a single execution of a given UML specification, a new message
is created and added to the relevant output queue. Note that messages with
the same name and the same arguments may already be in use during this
execution. This is also realized by the rules defined above. Note also that these
rules are the only way that messages are created in the execution of a UML
specification. Thus, during a single execution of a particular specification,
each message is only created once, and only at one particular location of
the specification. Note also that in the definition of a behavior of UMSs in
terms of UML Machines, no messages are newly created or duplicated, but
only transferred between different input, output, and link queues. The only
other place a message is referred to in a UML specification is the event in the
statechart or sequence diagram of its recipient where it is consumed. Again, in
each given execution of a specification, there can be at most one such event,
because when a message is consumed, it is removed from the queues of a
specification. This is a restriction in so far as diagrams cannot be used in a
way that permits “overlapping” in time. More details about this are given in
Fact 8.1. It is a simplification for us in that related questions of consistency
within a single specification are avoided.

We fix a set Activity of activity names such that each activity has an
associated UML Machine representing the activities in a UML specification.
Each such UML Machine A has a Boolean finished 4 € out as one of its output
values, which is set to true by A when it is finished. These UML Machines
may themselves be given as the formal semantics of UML diagrams defined in
the following sections. They may also be defined directly using UML Machine
rules, for example, an assignment to an attribute. We assume that there is an
activity Nil € Activity representing absence of activity, whose UML Machine
has the following rule:

Rule Exec Nil :
finished yj; := true

We assume a set Stereotypes of stereotype names to be given, as well as
a function mapping each stereotype to its set of associated tags and its con-
straint. In a UML diagram, stereotypes are written in double angle brackets
« ». For examples see Chap. 4 where we present the stereotypes used for the
extension UMLsec of UML for secure systems development.

The set of Boolean expressions BoolExp is the set of first-order logical for-
mulas with equality statements between elements of Exp as atomic formulas.
They are used for example as guards in UML diagrams.

In the following sections, we will define the abstract syntax of the various
UML diagrams considered here using mathematical notation, and then give
a precise semantics of the modeled system behavior for each of the diagram
kinds using UML Machines. In Sect. 8.1.7, we explain how to use the different
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kinds of diagram in the context of a UML system specification, and we put
the formal semantics of the various diagram types together to form one formal
semantics for a UML system specification.

8.1.2 Class Diagrams

We define the abstract syntax for class and object diagrams.
A message specification O = (oname, args, otype) is given by:

an operation or signal name oname € Op U Sig,
a set args of arguments of the form A = (argname, argtype) where argname
is the argument name and argtype its type, and

e the type otype of the return value.

Note that the set of arguments may be empty, and that the return type may be
the empty type () denoting absence of a return value. We assume the “default”
types Exp for arguments and () for return values, which may be omitted to
increase readability.

An object O = (oname, cname, stereo, aspec, mspec, int) is given by:

an object name oname,

a class name cname,

a set stereo C Stereotypes of stereotypes,

a set of attribute specifications aspec of the form A = (aname, gtype) where
aname € Attribute is the attribute name and gtype the attribute type,
a set of message specifications mspec, and

a set of interfaces int of the form I = (iname, mspec) where iname is
the interface name and mspec a set of message specifications, such that
messages with the same name in different interfaces have the same type.

A class is, formally, an “object” (as defined above) C' = (oname, cname,
stereo, aspec, mspec, int) where oname is the empty string.
A dependency is a tuple (dep, indep, int, stereo) consisting of:

e the names dep of the dependent and indep of the independent class, sig-
nifying that dep depends on indep,

e an interface name int (the interface of the class indep through which in-
stances of dep accesses instances of indep; if the access is direct this field
contains the name of the independent class), and

e a stereotype stereo € {« call», « send»}.

A class diagram D = (Classes(D), Dep(D)) is given by a set Classes(D) of
classes and a set Dep(D) of dependencies.? We require that the names of the
classes are mutually distinct.

2 Again, we omit modeling elements such as associations, specific notation for active
objects, other stereotypes, and other modeling elements only because they are not
used in the following. They can be added without complication.
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An object diagram O = (Objects(D), Dep(D)) is given by a set Objects(D)
of objects and a set Dep(D) of dependencies, such that object specifications
from the same class coincide up to the object name, and the names of differ-
ent objects are mutually distinct. Note that on the level of abstract syntax,
it is sufficient to specify dependencies between classes rather than objects,
although on the level of concrete syntax of object diagrams, dependencies are
drawn between objects.

Note that in UML, class (resp. object) diagrams may contain subsystems
(resp. subsystem instances) rather than classes (resp. objects). To avoid con-
fusion, we use the term static structure diagram as defined in Sect. 8.1.7 in
this case, following a suggestion in [UMLO03, p. 3-34].

8.1.3 Statechart Diagrams

Usually statecharts are used to describe the behavior of classes of objects
rather than single objects, for simplicity. Note that this has to be handled
with care because often subclassing does not preserve behavior, so that a
statechart may not actually give the behavior of an object of the class it is
associated with, if the object is in a subclass with different behavior. When
assigning a meaning to a UML specification, one eventually has to associate
statecharts with objects, because objects, rather than classes, execute the
behavior modeled by statecharts. To simplify the treatment, in the following
we assume that this step to the instance level has already been made, and
associate statecharts with objects already. From the perspective of our usage
of UML, this suggests itself also because the difficulties that we will focus
on (such as security properties of a system) are typically not closely related
to the fact that there are a high number of objects in a given class. Rather,
they are related to the behavior of a few objects or components that has
to be analyzed rather carefully. This is similar to the situation with other
non-functional requirements, which are usually analyzed on the instance level
[Wat02]. Therefore, it seems to make sense to explicitly model these instances,
and thus to remain on the instance level, for our purposes. We thus let the
user of our approach determine how far objects in the same class are supposed
to have the same behavior. Note that statecharts may also define other model
elements, rather than complete object behavior. For example, we will later
use statecharts to define activities.

We extend a part of the formal semantics for statecharts from [BCRO0] in
the following respects:

e Events can carry parameters. This is also one of the major differences from
Harel’s statecharts [UMLO03, p. 2-174].

e We incorporate a dispatching mechanism for events and the handling of
actions.

To keep the treatment accessible, we give the formal semantics for state-
charts that are simplified as follows, which is sufficient for our present needs:
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Events cannot be deferred.
There are no history states.
Transitions may not cross boundaries within or across composite states.
Transitions from composite states must be completion transitions.

e Invocation cycles, as defined in Sect. 8.1.1, are not permitted, and an at-
tempt to execute any will result in deadlock, as explained in Sect. 8.1.1
and similar to the treatment in [HG97]. More details are given below.

Also, fork-join and junction pseudostates, and submachine, stub, and synch
states, can be defined using the constructs treated here. We therefore omit
their treatment, as well as that of time and change events.

Abstract Syntax of Statechart Diagrams

We define the abstract syntax of statechart diagrams.

A statechart diagram D = (Object,, Statesp, Topp, Transitionsp) is given
by an object name Object ), a finite set of states Statesp, the top state Topp €
Statesp, and a set Transitionsy, of transitions, defined in the following. We use
Object, to provide the context of a statechart diagram which links a state
machine to another model element. This is usually not part of the concrete
statechart syntax but needed when giving a formal semantics to complete
specifications as in Sect. 8.1.7.

Statesp is a set that is disjointly partitioned into the sets Initialp of initial
states in D, Finalp of final states, Simplep, of simple states, Concp of concur-
rent states, and Sequj, of sequential states in D, together with the following
data for each S € Statesp:

a string name(S) of characters called the name of the state,

an action entry(S) € Action called the entry action,

a set of states state(S) C Statesp, the set of substates of S,

an activity internal(S) € Activity called the internal activity (or do-
activity) of the state, and

e an action exit(S) € Action called the exit action,

under the following conditions:

We have Top,, € Concp U Sequy,.
For every S € Sequp, there exists exactly one T' € state(.S)NlInitialp (which
we write as init(S)).

e S € Simple, UFinalp Ulnitial p implies state(S) = ) and S € Concp implies
that state(S) has at least cardinality 2.
T € Concp and S € state(T') implies S € Concp U Sequpy.
For all S,T € Statesp, state(S) Nstate(T) # () implies S =T
For S € Initialp U Finalp U {Topp}, we have entry(S) = nil, internal(S) =
Nil, and exit(S) = nil.



204 8 Formal Systems Development with UML

e Let the relation < on states S € Statesp be defined by S < T if there
exist states Si,...,S, with n > 1 such that Sy = S, S,, =T, and S; €
state(S;41) for ¢ < m. Then < is acyclic (in particular irreflexive), and
fulfills the condition that for all S,T,U € Statesp with S < T and S < U
we have T' < U or U < T. Top,, is the largest element in Statesp with
respect to <.

Intuitively, therefore, a state S € Statesp in a statechart D may be an initial,
final, simple, concurrent, or sequential state. A state has a name. Unless it
is initial or final, it may have entry and exit actions executed when entering
and exiting it, and an internal activity executed while the state is active. Con-
current and sequential states have substates, which in the case of concurrent
states are again concurrent or sequential states (and the sets of substates are
mutually disjoint). The substate relation fulfills certain saneness conditions
that follow directly from the definition of statecharts at the concrete syntax
level. An example is the non-existence of substate cycles. Note that the name
of the state has no semantic significance. It may be omitted, then name(S) is
the empty string. We allow the same internal activity to be used in different
states. It is initialized whenever such a state is entered and is executed at each
current state of which it is the internal activity, until it finishes. For technical
reasons, there exists a “top” state which includes all other states as substates,
possibly in a nested way. At the beginning, the initial state which is a direct
substate of the top state is entered.

Transitionsp is a set with subset Internalp C Transitionsp such that for
t € Transitionsp, we have the following data:

a state source(t) € Statesp, the source state of ¢,

an event trigger(t) € Events, the triggering event of ¢,

a Boolean expression guard(t) € BoolExp called the guard of t,
an action effect(t) € Action (to be performed when firing ¢), and
a state target(t) € Statesp, the target state of ¢

under the following conditions for each ¢ € Transitions:

e source(t) ¢ FinalpU{Top,,} (final states and the top state have no outgoing
transitions).

o target(t) ¢ Initialp U {Topp} (initial states and the top state have no
incoming transitions).
source(s) = source(t) € Initial ) implies s = t for any s,¢ € Transitionsp,.
source(t) € Initialp implies trigger(t) = ComplEv and guard(t) = true
(where = denotes syntactic equality).

e For any S € Statesp, source(t) € state(S) implies S € Sequp and
target(t) € state(S).

e trigger(t) must be of the form op(ezp,, ..., exp,) € Events where ezp,,
..., exp, € Var are variables (called parameters), which must be mutually
distinct.

o If ¢ € Internalp then source(t) = target(t).
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e Multiple completion transitions leaving the same state must have mutually
exclusive guard conditions. For s,t € Transitionsp such that source(s) =
source(t) and trigger(s) = trigger(t) = ComplEv, the condition guard(s) A
guard(t) evaluates to false for any variable valuations [UMLO03, p. 2-159].

The intuition is that transitions describe how to proceed from one state of an
object (the source state of the transition) to another (the target state). Firing
a transition is caused by its triggering event. This is an event whose message
has mutually distinct variables as arguments. The transition is only fired if
its guard is currently fulfilled. In that case, the effect of the transition is also
executed. There are some consistency restrictions on the abstract syntax: final
states and the top state have no outgoing transition, and initial states and
the top state no incoming transition. An initial state has only one outgoing
transition, which is a completion transition the guard of which is the constant
true. A state with outgoing transition can be a substate only of a sequential
state, which also contains the target state of that transition. For internal tran-
sitions the source and target states coincide. Multiple completion transitions
leaving the same state must have mutually exclusive guard conditions.

As in [BCROO0], we assume a special completion event ComplEv € Events,
with no parameters. A transition ¢ with trigger(t) = ComplEv is called a
completion transition. The trigger ComplEv is not written explicitly in the
diagram.

A guard consisting of the expression true may be omitted in the diagram,
as well as any occurrence of the action nil (in both states and transitions) or
the internal activity Nil. If ¢ € Internalp then ¢ is called an internal transition,
otherwise it is called external.®

To model the passing of control, we assume that return messages return,,
are given explicitly in the diagrams and that the following conditions are
fulfilled:

e A target state S’ of a transition whose action op is a synchronous call
operation has no internal activities and exactly one outgoing transition,
and this transition carries the corresponding return event returngp, and no
guards or actions, as follows:

S e L8
op(arg)

e For any transition ¢ with effect(t) = returny, for some op € Op, we have
internal(target(t)) = Nil and trigger(s) # ComplEv for any transition s with
source(s) = target(t).

The first condition ensures that, within a concurrent substate, an object that
makes a synchronous operation call hands over the control thread and waits

3 Note that there can be external transitions with the same source and target states
and that these are different from internal transitions, because triggering the latter
does not involve executing entry or exit actions of the corresponding state.
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until the return message arrives. The second condition ensures that, within a
concurrent substate, an object gives back the thread of control when passing
back the return message of a synchronous operation call. Note that both
conditions apply to each concurrent substate of a statechart separately. For
example, this means that after sending a synchronous message, and while
waiting for the return message, an object may be specified to accept an other
message, through a different concurrent substate. For an example see Fig. 8.1
and the explanation there. If confusion is impossible, the subscript op on
return messages may be omitted in the diagram.

Since the standard UML statecharts definition does not treat recursive
calls properly, as pointed out in [TS02], we do not permit recursive calls,
similar to the treatment in [HG97].

Nevertheless, for the assignment of return values, one may use the notation:

ev[gd]
S oo™
as a shortcut for
ev(gd] turn,,
S iy LS S
op(arg)

Here ev is an event, gd a guard, and S’ is a simple state with no other incoming
or outgoing transitions, and no entry nor exit actions, nor internal activities.
We emphasize that we treat this simply as a syntactic shortcut.

As a further syntactic shortcut, one may use pattern matching with con-
stants as arguments in the event specifications for increased readability. These
event specifications should be replaced by events with variables as arguments
and the relevant guard conditions before assigning the formal semantics.

Behavioral Semantics

We give a formal semantics of statechart diagrams using UML Machines. It is
based on part of [BCRO0], which, however, had to be extended to incorporate
features such as explicit modeling of the passing of messages with their argu-
ments between different objects or components, and use of the arguments in
the subsequent execution.

The central part of the UML statechart semantics is the run-to-completion
step, which means that events are processed one at a time, and that the
current event is completely executed before the next event is dispatched. Any
dispatched event that does not trigger any transition is lost.

We explain how our statechart semantics, for multi-threaded objects,
treats the fact that an object may receive several synchronous messages call-
ing the same operation op before sending back a corresponding return value,
in different concurrent substates. To enable sending back the return value to
the sender, each state S containing substates that accept op has an associated
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. call(x1) - return(x7)
/store(x2) Init /call(x4) Respl /return(x8) @
® ®

Init store(x3) Init call(x5)
ni /return(x6)

Fig. 8.1. Example: parallel invocations

last-in—first-out buffer sender(S, op) containing the names of the senders of the
message calls. See the vocabulary of [D]°¢ defined below. This buffer is up-
dated by the macro execEv(t, e) given below. When return messages are sent
out from within S, the recipients of these messages are taken from that buffer,
as defined in ActionRuleg(send(returng,(args))) below. Thus the assumption
is that, within a state S, a return message for op corresponds to the last call of
op received beforehand. Also, we assume that return messages are sent while
the execution is still in a (direct) substate of S. Otherwise, the return message
is lost, to avoid confusion with return messages from concurrent substates. A
simple example of such a situation is given in Fig. 8.1. A typical execution
of this statechart would be, firstly, to wait for reception of the synchronous
operation call with argument x1, handled by the first of the two concurrent
substates. Then, it would call itself first with the asynchronous message store
with argument x2 and then with the operation call with argument x4. This is
both done by the first substate, while the reception is handled by the second
substate. Then, it would send the return value x6 back to itself and finally the
return value x8 back to the sender of the first call message.

Note that we do not consider call-backs within one state, rather than across
several concurrent substates. We refer to the comment in [HG97, p. 39]: “When
the client’s statechart invokes another object’s operation, its execution freezes
in midtransition, and the thread of control is passed to the called object.
Clearly, this might continue, with the called object calling others, and so on.
However, a cycle of invocations that leads back to the same object instance is
illegal, and an attempt to execute it will abort.” In fact, recursive call-backs
within one thread cannot be handled properly within the current official UML
statechart run-to-completion semantics, as pointed out in [TS02].

We fix a statechart diagram D together with a set Att, C Attribute of
used attributes and give its behavioral semantics as a UML Machine [D]°¢

with name O %' Name 4 = Object;, and the following functions:

the set name currState (storing the set of currently active states),

the multi-set names inQug, outQup (the input and output queues),

the function name sender(S, op) mapping each concurrent or sequential
state S € Concp U Sequ,, and each synchronous operation name op € Op
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to a list of sender names each of the form nq::...::ng where nqy,...,ng_1
are names of subsystems and ny is the name of an object,

e the function name finished : {[D]°“} U Statesp — Bool (indicating
whether D or a given state is finished),
all variable names in trigger(t) for all ¢ € Transitionsp, and
the attribute names in Att,.

Recall from the definition of UML Machines in Sect. 7.1 that whenever
several UML Machines are executed in parallel (for example, those arising
from different statecharts), they may generally share only input and output
queues and their finished flag, if necessary by suitable renaming. The only
exception occurs in the semantics for subsystems in Sect. 8.1.7 where different
UML Machines modeling activities of the same object may share input and
output queues and attributes. Therefore, to improve readability, we refrain
from explicitly parameterizing names such as currState and Completed (see
below), for example, although they are associated with a specific statechart
diagram. On the other hand, each value finishedg for a state S € Statesp of
D is shared between the UML Machine [D]®“ modeling D and the UML
Machine modeling the internal activity of S (if any exists), by assumption on
activities, as explained in Sect. 8.1.1.

The Boolean finisheds may be set to true by the rule Execinternal(S) of
an internal activity at state S to indicate that the activity has finished. In
particular, the UML Machine [D]%¢ sets finishedjpysc to true at the end of
its execution.

For each state S € Statesp \ {Topp}, we write upState(S) for the unique
state of which S is a direct substate.

At the initial state of the UML Machine [D]°“, we define:

e inQup and outQup to be equal to 0,
currState & {Topp, } U (Initial p N state(Topy,)),
finishedpysc and finished 4 for any internal activity A to be equal to false,
and det

e senders(op) = [] for each state S and operation name op € Op.

The UML Machine [D]°¢ has the rule Exec D given in Fig. 8.2 using
macros defined in the rest of the subsection. It selects the event to be executed
next, where priority is given to the completion event, and executes it. Then,
it executes the rules for the internal activities in a random order.

The idea behind the statechart rule in Fig. 8.2 is the following. Firstly, it is
checked whether all active states are final and direct substates of the top state,
in which case the execution of the statechart is finished, which is indicated
by setting finishedjpysc := true. Otherwise, an event is executed. If there is a
state that is completed, and thus contained in the set Completed defined below,
the completion event is executed. Otherwise, an event e is dispatched from
the input queue, provided it is non-empty, which is executed. After the event
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Rule Exec D :
if currState C Finalp Nstate(Topy,) then finishedpysc := true
else
if Completed # () then eventExecution(ComplEv)
else
choose e with e € inQup do
inQup :=inQup \ {e };
eventExecution(e);
loop S through set currState
Exec (internal(S))

Fig. 8.2. Statechart rule

execution, a further iteration of the internal activities of the active states is
performed.*

Thus our semantics is ”based on the premise that a single run-to-comple-
tion step applies to the entire state machine and includes the concurrent steps
taken by concurrent regions in the active state configuration” [UMLO03, p. 2-
162].

Here we make use of the macro Completed. With macro we mean a name
that is just introduced for presentation purposes. It is not a function updated
by [D]®¢, but instead its definition is included in the rule at each of its
occurrences when executing [D]°“. This remark also applies to the other
macros used in the following. Completed is defined to be syntactically equal
to the following expression:

Completed =

{S € currState : 3t € Transitionsp.(source(t) = .S A trigger(t) = ComplEv)A
(S € Initialp
\% ﬁniShedinternal(S)
V (S € Sequy, U Concp A state(S) N currState C Finalp))}

eventExecution(e), for an event e, is defined to be syntactically equal to
the expression given in Fig. 8.3.

Note that at any given point in time, an event may fire several transitions
in different concurrent regions. The rule loop T through set FirableTrans(e)
in the eventExecution(e) rule ensures that this is done consistently by sequen-
tializing it.

The set FirableTrans(e) is defined as follows. For any transition ¢ we define
enabled(t, ComplEv) L frue if the following conditions are fulfilled (otherwise
it is false):

e trigger(t) = ComplEv,

4 Recall that internal activities are themselves modeled as UML Machines, which
means that executing Execinternal(S) for a state S does not restart the activity
internal(S), but only executes a further cycle of that activity.
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eventExecution(e) =
loop T through set FirableTrans(e)
choose t with t € T' do
if t € Internalp then execEv(t,e)
else
exitState(source(t));
execEv(t, e);
enterState(target(t))

Fig. 8.3. Event execution rule

e guard(t) is true, and
e source(t) € currState N Completed.

For any transition ¢ and any event e # ComplEv we define enabled(t, ) def

true if the following conditions are fulfilled (otherwise it is false):

e the operation or signal names of trigger(t) and e coincide:
msgnm(trigger(t)) = msgnm(e),

e guard(t) evaluates to true when its variables are substituted with the ar-
guments of e, and

e source(t) € currState.

Let FirableStates(e) be the set of <-minimal elements in the following set:

{S € Statesp : 3t.enabled(t, €) A source(t) = S}.

Then we define the set of sets of enabled transitions with the same, inner-
most state:

FirableTrans(e) def {{t € Transitionsp : enabled(t, e) A source(t) = S} :
S € FirableStates(e)}

We define the macro exitState(S) for a state S in Fig. 8.4.

exitState(S) =
if state(S) N currState # ()

then

loop T through set state(,S) N currState
exitState(T")

else
currState := currState \ {S};
ActionRuleg(exit(S))

Fig. 8.4. Exit state rule



8.1 Formal Semantics for a Fragment of UML 211

The intuition behind this rule is the following. First the substates of the
state S to be exited are exited recursively. Then S is exited by removing it
from the set of current states and by firing its exit rule.

The macro execEv(t,e), for a transition ¢ and an event e, is defined in
Fig. 8.5. In Args(trigger(t)) := Args(e), each of the variables in trigger(t) is
assigned the respective input value in Args(e).

execEv(t,e) =
Args(trigger(t)) := Args(e);
if msgnm(e) € Op then
sender(upState(source(t)), msgnm(e)) :=
sndr(e).sender(upState(source(t)), msgnmy(e));
ActionRule ;s;aie(source(t)) (effect(t))

Fig. 8.5. Execute event rule

We define the macro enterState(S) for a state S in Fig. 8.6. The idea here
is the following. First S is added to the set of current states, its entry action
is executed, and its internal activity is initialized. sender(S, op) is initialized
to the empty list for each operation op. If S is a sequential state, its initial
state is entered. Otherwise, that is, if S is a concurrent state or if its set of
substates is empty, its substates are entered recursively.

enterState(S) =

currState := currState U {S};

ActionRule a5y (entry(S));

forall op with op € Op do
sender(S, op) = [J;

if S € Sequ then enterState(init(S))

else loop 7' through set state(.S)
enterState(T")

Fig. 8.6. Enter state rule

Example

The interpretation [Sndr]°¢ defined above of the statechart Sndr given in
Fig. 8.7 which describes the behavior of the object Sndr is equivalent, in
the sense of Sect. 7.1, to the UML Machine [Sndr]°¢ whose rule is given
in Fig. 8.8. The execution of a simplified version of this UML Machine is
explained in Fact 7.4. Further examples are given in Chap. 5.
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send(d)
=)
/transmit(d)

Fig. 8.7. Example: sender statechart

8.1.4 Sequence Diagrams

We emphasize again that we give a formal semantics only for a simplified frag-
ment of sequence diagrams, for reasons explained in Sect. 8.1, which, however,
is sufficient for our present needs. Recall that in our approach, we view an
object as an entity characterized by a unique name. We thus identify the ob-
jects in the runtime system with UML objects. Also, recall that at each point
of a given execution of a system, the same message instance in the running
system is only represented once in the UML diagrams.

Following [UMLO03] we assume that no two events happen exactly at the
same time. This implies that some behavior that could be viewed as concur-
rent may be sequentialized, for example, if two subsequent messages involve
completely distinct components as senders and receivers. Note that this design
decision in [UMLO03] is not a restriction in practice. In particular, in the exam-
ple mentioned, the formal semantics given below allows the two messages to
be sent in an arbitrary order. For simplicity, we omit the possibility to specify
time information in sequence diagrams.

Furthermore, UML sequence diagrams in their full generality allow one to
use branching lifelines to specify conditional branching. It has been argued,

case currState of
{Topg,ar, Initialsnar }: do currState := {Topg,, 4., Wait}
{Topg,ar, Wait}: do
choose e with e € inQug,4,. do
do — in — parallel
iNQugpg, == iNQugng, \ {e }
if msgnm(e) = send then
do — in — parallel
currState := {Topg,,4,., Send}
d := Args(e)
enddo
enddo
{Topg,4r, Send}: do
do — in — parallel
currState := {Top g, 4., Wait}
tooutQug, g ({ transmit(d) } )
enddo

Fig. 8.8. Example interpretation
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however, that branching lifelines can become confusing when the system un-
der consideration has a significant amount of conditional branching [Fow04].
Thus, in our approach we do not consider branching lifelines in sequence di-
agrams, but use statecharts when necessary to model conditional behavior.
Similarly, we do not use sequence diagrams, but instead statecharts, if we
want to describe concurrent behavior within a given component. Sequence
diagrams are mainly used to describe behavior exemplarily. When needed, it
would be possible to extend our sequence diagram semantics with branching
lifelines, or with the possibility to model sequence diagrams with partially
overlapping behavior.

Under the above assumptions, all connections in a sequence diagram can
be ordered strictly by their occurrence, that is, by their horizontal position in
the sequence diagram. This relies on the above assumption that for physical
reasons, two events do not happen exactly at the same time, and that therefore
only one event is specified to happen at any point in time.

Recall also that following [KWO01, p. 15], we do not model the creation
and deletion of objects explicitly. In particular, we do not have creation or
deletion messages in sequence diagrams.

Note also in our intended application domain of security-critical systems
that sequence diagrams have to be used carefully [Aba00]: precisely, a message
msg on a connection from an object O to an object P, where O and P are
connected by an untrusted network, means that:

e (O sends msg to the network with intended recipient P, and
e if P receives a message msg’ with the same message name as msg, it will
proceed with its protocol part using the arguments of msg’.

There is no guarantee that P will ever receive a message with the same name
as msg, or that msg’ contains the same arguments as msg. Therefore we
treat the sent and received arguments as potentially different entities in the
sequence diagram. We do this below by using, for each object O, each message
msg accepted by O, and each number n up to the number of arguments of
msg, a local variable O.msg,, of O that denotes the nth argument of the most
recent instance of the message msg that is supposed to be received by the
object O according to the sequence diagram. As usual, the prefix O may be
omitted if no confusion will arise. These variables may have different values
from those intended by the protocol, depending on a possible adversary. Also,
an object has no information about the sender of a message. So at any point
during the execution of the sequence diagram, the object may actually receive
the expected message, which may or may not come from the expected sender,
from inside or outside the sequence diagram. See Sect. 5.2 for a discussion of
these issues in the specific situation of modeling security protocols.

An example of a sequence diagram is given in Fig. 3.4, which is discussed
in more detail in Sect. 5.2. To increase readability, we use the notation var ::=
exp as a syntactic shortcut. Here var is a local variable not used for any other
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purpose and exp may not contain var . Before assigning a semantics to the
diagram, the variable var is replaced by the expression exp at each occurrence.

Abstract Syntax of Sequence Diagrams

A sequence diagram D = (Obj(D), Cncts(D)) is given by:

e aset Obj(D) of pairs (O, C) where O is an object of class C' whose inter-
action with other objects is described in D, and

e afinite sequence Cncts(D) consisting of elements of the form I = (source(l),
guard(l), msg(l),target(l)) (so-called connections) where
— source(l) is the source object of the connection,
— guard(l) € BoolExp is a Boolean expression that is the guard of the

connection,

— msg(l) € Events is the message of the connection, and
— target(l) € Obj(D) is the target object of the connection,

such that for each I € Cncts(D), we have source(l) € Obj(D) or target(l) €
Obj(D), or both. A guard syntactically equal to ¢rue may be omitted in the
diagram.

Note that our semantics for sequence diagrams given below supports the
joint use of different sequence diagrams D, D’ where Obj(D) N Obj(D') # 0
provided that the parts of D and D’ referring to the same object O relate to
different parts of the possible behavior of O separated in time or depending
on mutually exclusive preconditions. Different aspects of parts of its behavior
that may not overlap over a period in time. That is, at any one time the
behavior of a given thread of an object is represented by only one diagram.

To model the passing of control, we assume that return messages return,,
are given explicitly in the diagrams and that the following condition is fulfilled
for each sequence 1 of connections at nodes in Cncts(D): The number of return
messages return,, for an operation op sent from an object O is at any time
bounded by the number of calls of op received up to that time. That is, no
return,, message is sent without previously receiving a corresponding op call.

If confusion is impossible, the subscript op on return messages may be
omitted in the diagram.

Behavioral Semantics

We present, the formal semantics for sequence diagram behavior. It supports
explicit modeling of the passing of messages with their arguments between
different objects or components, and further use of the arguments in the sub-
sequent execution. For example, the guards of the transitions may refer to the
input arguments and the attributes may be assigned values received as input.

In the semantics defined below, the sequence 1 of connections in a sequence
diagram is split into “views” 1, for each of the involved objects O, consisting
of the connections going out from or coming into O, as defined more precisely
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below. For each such view, we define a UML Machine modeling the behavior
of O as defined by the sequence diagram.

As with statecharts, we model the order of dequeuing events from the
event queue using the non-deterministic choice operator of UML Machines, to
cover the different possibilities of this semantic variation point. A motivation
for this treatment is given in Sect. 8.1.3.

As in the case of statecharts, we also have to account for the possibility
that an object may receive several synchronous message instances calling the
same operation op before sending back a corresponding return value. To enable
sending back the return value to the sender, each UML Machine representing
an object O in the sequence diagram that accepts op has an associated last-
in—first-out buffer senderr,,(0op) containing the names of the senders of the
message calls, as defined for UML Machines in Sect. 7.1. This may be short-
ened to sender(op) because a sequence diagram has only one control state
Top.

When return messages are sent out from O, the recipients of these mes-
sages are taken from that buffer, according to the definition of the macro
ActionRuler,, (return,, (args)) in Sect. 8.1.1. The condition on the return
messages in the above subsection on the abstract syntax ensures that the
buffer is not empty at that point. Thus the assumption is that a return mes-
sage from O for op corresponds to the last call of op received by O beforehand.

Note that there is only one input buffer and one output buffer for a given
object or component, even if it occurs in several sequence diagrams. How to
nevertheless consistently model the joint use of several behavioral diagrams
within one subsystem is explained in Sect. 8.1.7.

We fix a sequence diagram D and an object O € Obj(D). We give the
behavior of O as defined in D as a UML Machine [D.O]°?.

We assume that for each object O, each message msg accepted by O,
and each number n up to the number of arguments of msg, the set Var
of variables contains an element O.msg, that will store the nth argument
of the most recent instance of the message msg that is supposed to be
received by the object O according to the sequence diagram. We define
O.msg = [0.msg,,...,0.msg,], where the operation msg is assumed to have
k arguments.

The signature of [D.O]°” has the following function names:

the multi-set names inQug, outQup (the input and output queues),
the name finishedjp opsp € Bool (indicating whether [D.0]5P
ished),

e a name cncts (the subsequence of Cncts(D) consisting of the connections
relevant to O that are still to be processed),

e the function name sender(op), as shorthand for sender,,(op) since a se-
quence diagram has only one control state Top, mapping each synchronous
operation name op € Op to a list of sender names each of the form

is fin-
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N1 ... ng where ny,...,ng—1 are the names of subsystems and ny is
the name of an object, and
e the names O.msg,,.

Sending a synchronous message op € Op, asynchronous message msg €
Sig, or return message return,, is modeled as the actions a = call(op), a =
send(sig), and a = send(return,y ), respectively, with the UML machine rules
ActionRuler,,(a) defined in Sect. 8.1.1. For sequence diagrams, we write
this  shorter as  ActionRuleSD(op), ActionRuleSD(sig), or
ActionRuleSD(return,, ), respectively.

Given a sequence of connections 1 and an object O, we define 1|, to be the
subsequence 1 of those elements [ with source(l) = O or target(l) = O, called
the object O’s view of the connections.

At the initial state of the UML Machine [D.O]%?, we define:

e inQup and outQup to be equal to (,

cncts & Cncts(D)| 5, and
finished := false.

The rule of the UML Machine [D.0]*? is given in Fig. 8.9.

Thus the sequence cncts of connections with source or target O is processed
from the beginning to the end. If the connection ¢ under consideration has
O as its source and the guard of ¢ evaluates to true, the message of c is sent
out, and, unless ¢ has O also as its target, the next connection is examined.
If the guard of ¢ evaluates to false, the execution of the sequence diagram
does not proceed. If the connection ¢ under consideration has O as its target,
an event with the same message name as the message of ¢ is chosen and
dispatched from the input queue (if existent), and its arguments are stored in

Rule Exec D.O :

if cncts = [] then finishedp.o := true
else
if source(head(cncts)) = O A guard(head(cncts))
then

ActionRuleSD (msg(head(cncts)));
if target(head(cncts)) # O then cncts := tail(cncts);
if target(head(cncts)) = O then
choose e with e € inQug
Amsgnm(msg(head(cncts))) = msgnm(e) do
inQuo :=inQup \ {e };
O.msg(head(cncts)) := Args(e);
if msgnm(e) € Op then
sender(msgnm(e)) := sndr(e).sender(msgnmy(e));
cncts := tail(cncts)

Fig. 8.9. UML Machine rule for sequence diagram
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the variable O.msg(head(cncts)). If the specified system executes as planned
there will be such a message in our input queue put there by another object
in the diagram under consideration, that is the one put there by the object
from whose point of view ¢ is an outgoing message. If such an event does not
currently exist, the input queue is checked at each iteration round until it
does exist. When the sequence cncts is reduced to the empty list, finishedp o
is set to true and no further processing is done.

Note that it is not checked whether an object actually uses up all the con-
tents of its input queue. Also, this semantics automatically enforces the (real-
istic) assumption that the behavior of an object after reception of a message
does not depend on the identity of the sender of this message. In particular,
at any point during the execution of the sequence diagram, the object may
actually receive the expected message, which, however, may or may not origi-
nate from the expected sender, which may or may not be part of the sequence
diagram.

8.1.5 Activity Diagrams

In our treatment, the only actions admitted in activity diagrams are assign-
ments, since messages are processed by the activities in the activity diagram.

As in the statechart case, fork-join and junction pseudostates, and subma-
chine, stub, and synch states, can be reduced to the constructs treated here.
Note that this, in particular, requires that the activity diagrams are well-
structured in the sense that they can be viewed as statecharts, following what
the UML 1.x definition requires on [UMLO03, p. 2-178]. Note, however, that the
UML definition document is not entirely consistent with regard to this point.
In particular, some additional features of activity diagrams mentioned in the
UML definition may contradict its requirement that activity diagrams should
be a special kind of statechart, such as multiple parallel invocations of the
same activity. In our simplified account of activity diagrams, we do not con-
sider such features. Despite the different notation, the same well-formedness
rules on states as in state-machines then apply [UMLO03, p. 2-178]. Since we
only consider a simplified fragment of statecharts, we thus also only consider
a simplified fragment of activity diagrams, which is sufficient for our needs.
We do not consider the additional concept of object flow states, since we will
not need it.

Thus the abstract syntax of activity diagrams is defined as follows, which
is a simplification of the abstract syntax of statecharts from Sect. 8.1.3.

An activity diagram D = (Statesp, Topp, Transitionsp) is given as a finite
set of states Statesp, the top state Topp € Statesp, and a set Transitionsp of
transitions, defined in the following.

Statesp is a set that is disjointly partitioned into the sets Initialp, Finalp,
Simple,, Concp, Sequp,, together with the following data for each S € Statesp:

e a string name(S) of characters called the name of the state,
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Rule Exec D :
if currState C Finalp Nstate(Topy,) then finishedpysc := true
loop S through set currState
Execinternal(S)

Fig. 8.10. Activity diagram rule

an action entry(S) € Action called the entry action,

a set of states state(S) C Statesp, the set of substates of S,

an activity internal(S) € Activity called the internal activity (or do-
activity) of the state,

an action exit(S) € Action called the exit action, and

the name swim(S) of the swimlane containing .S,

under the conditions given in Sect. 8.1.3 and the condition that access to
attributes applies only to attributes of the object in the relevant swimlane.

Transitionsp is a set with subset Internalp C Transitionsp such that for
t € Transitionsp we have the following data:

a state source(t) € Statesp, the source state of ¢,
a Boolean expression guard(t) € BoolExp called the guard of ¢,
and

e a state target(t) € Statesp, the target state of ¢

under the conditions given in Sect. 8.1.3. Transitions in activity diagrams do
not have events or actions. They are triggered by completion events.

Then following the statechart semantics in Sect. 8.1.3, an activity diagram
D with a set Att;, C Attribute of attributes, used by the activities in D,
and a set S of swimlanes representing objects or components are modeled
by a UML Machine [D]4P. It is defined as [D]°, except that there is no
access to the input and output queues, which happens on the activity level.
For completeness, the simplified rules are repeated below.

An internal activity S in an activity diagram can for example be given
as D for a statechart D, or D.O for a sequence diagram D and specified
object O. Here Object, or O is the name of the object or component swim(.S)

eventExecution(e) =
loop T through set FirableTrans(e)
choose t with t € T do
if t € Internalp then execEv(t,e)
else
exitState(source(t));
enterState(target(t))

Fig. 8.11. Activity diagram Event execution rule
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labeling the swimlane containing S. For more details on how this could be
done and on the restrictions we impose to achieve this, see Sect. 8.1.7. In
this way our statechart semantics deals with the fact that activity diagrams
can contain several objects or components in different swimlanes. In each case,
the rule Exec D or Exec D.O is executed. By general assumption on the joint
execution of UML Machines made in Sect. 7.1, these generally have their own
namespaces, except for those variables in their input and output signatures.
Thus different UML Machines modeling activities of the same object may
share input and output queues and attributes.

We give the rules for the activity diagram semantics, a simplified version of
those for the statecharts explained in Sect. 8.1.3. The UML Machine [D]4P
has the rule Exec D given in Fig. 8.10. Completed is defined as in Sect. 8.1.3.
eventExecution(e), for an event e, is defined to be syntactically equal to the
expression in Fig. 8.11. exitState(S) is defined as in Sect. 8.1.3. We define the
macro enterState(.S) for a state S in Fig. 8.12.

enterState(S) =
currState := currState U {S}
ActionRuleSC siae(s) (entry(S))
if S € Sequ then enterState(init(.5))
else loop T through set state(.S)
enterState(T")

Fig. 8.12. Activity diagram Enter state rule

8.1.6 Deployment Diagrams

We give the abstract syntax of deployment models. A node N = (loc, comp)
is given by:

the name loc of its location and

a set of contained components® comp of the form C = (name, int, cont)
where name is the component name, int a possibly empty set of interfaces,
and cont the set of subsystem instance and object names contained in the
component.

A deployment diagram D = (Nodes(D), Links(D), Dep(D)) is given by:

a set Nodes(D) of nodes,

a set Links(D) of links of the form I = (nds(l),ster(l)) where nds(l)
Nodes(D) is a two-element set of nodes being linked and where ster(l)
Stereotypes is a set of stereotypes, and

<
<

% With components we mean component instances. We do not consider component
or node types which are optionally allowed by the UML syntax specification.
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e a set Dep(D) of dependencies of the form (clt, spl, int, stereo) where clt
and spl are component names (the client and supplier of the dependency),
int is the interface of spl accessed by the dependency (with int = spl if
the access is direct), and stereo C Stereotypes is a set of stereotypes.
We assume that for every dependency D = (C, S, I, s) there is exactly one
link Lp = (N, s') such that N = {C, S} for the set of linked nodes.

8.1.7 Subsystems

In the UML definition document, there is relatively little restriction on the
kinds of diagrams a subsystem may contain and on the relation the diagrams
should have to each other. Therefore, giving a formal semantics for this un-
restricted use of UML subsystems, which assigns a formal meaning to the
diagrams contained in a subsystem as well, would amount to giving a formal
semantics to all of UML. For reasons explained in the introduction to this
chapter, this is not attempted in the present work. In particular, the notion
of subsystem considered here is restricted, for example in the kinds and num-
bers of diagrams that may be contained. To demonstrate that our use of UML
subsystems is reasonable and our semantics of sufficient interest, we present
several non-trivial case studies in Chap. 5.

Thus in our treatment, a system part C given by a subsystem instance S
may contain sub-parts Cy, . .., Cy, given in a so-called static structure diagram,
as defined below. Note that [UMLO03] uses the name static structure diagram at
the instance level although in the implemented system, objects may be created
at runtime. The diagram S contains an activity diagram that describes the
activities performed by the sub-parts: each swimlane in the activity diagram
gives the behavior of the sub-part C; whose name labels the swimlane, which
may be an object or may itself contain other system parts. Each activity in
the activity diagram may be specified either itself as a subsystem instance.
Its behavior may also be described directly as a UML Machine rule, such as
an assignment to an attribute. Alternatively, it can be defined using a set of
statecharts or sequence diagrams, for example, if the swimlane describes an
object.

Each statechart describes the behavior of one activity, following the se-
mantics in Sect. 8.1.3. The name of the activity is written next to the state-
chart. This way, we capture the context of the statechart, for which the UML
specification currently does not offer a special notation [UML03, 3.74.2].5

Alternatively, the sequence diagrams describe the behavior of a set of ac-
tivities that interact during their execution, as explained in Sect. 8.1.4. To
achieve this, the sequence diagram is split up into different views of the ob-
jects or components described in it, as explained in Sect. 8.1.4. Each such
view may then describe an activity in the swimlane of the relevant object
or component. Again the context of the sequence diagram is written next to

6 This may change with UML 2.0.
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the diagram, such that the name of a corresponding activity in the activity
diagram is the name written next to the sequence diagram followed by the
name of the object or system part carrying out the activity.

Two activities in the activity diagram in a subsystem may not at the
same time refer to the same sequence diagrams or statecharts and the same
object, to avoid overlapping specifications. This is explained in more detail
and defined precisely further below.

Recall that in our approach, we view an object or component as an entity
characterized by a unique name, which may have associated information such
as its attributes and their values which may change during its execution, which
may be specified as a statechart. Thus we identify the objects or components
in the runtime system with UML objects or components.

In modeling non-atomic activities using statecharts we follow [UMLO03,
2.13.2.7] which requires that at a subactivity state “an associated subactivity
graph is executed”. Since UML 1.x activity diagrams are special kinds of state
machines, we are more general by allowing the use of statecharts, but one can
of course restrict oneself to activity diagrams.

We will explain the idea behind this way of modeling activities. Firstly,
note that we take activity diagrams to be special kinds of statecharts, in ac-
cordance with the UML 1.x specification, as defined in Sect. 8.1.5. Also, one
may observe that within a statechart one may view the sequential substates of
a given state S to form a statechart themselves: one that describes a certain
activity performed at state S, provided that the statechart is well-structured
as the ones we consider here are. Thus, conversely, one may use statecharts to
define the activities in activity diagrams in a rather natural way: when giving
a meaning to an activity diagram, seen as a statechart C, the activities of
which are defined using statecharts, one essentially inserts the statecharts as
substates of the states in the statechart C. Intuitively, then, the statecharts
defining the activities appearing in the swimlane belonging to an object or
component C' could be put together to give a larger statechart describing the
behavior of C. Since from a sequence diagram, the formal semantics given
in Sect. 8.1.4 derives a state machine for each of the involved objects, cor-
responding to the object’s view of the sequence diagram, one may also use
sequence diagrams to describe activities.

As mentioned above, our way of modeling activities supports the joint
use of different sequence diagrams D, D’ where Obj(D) N Obj(D’) is non-
empty provided that the parts of D and D' referring to the same object O
relate to different parts of the possible behavior of O separated in time or
depending on mutually exclusive preconditions. By using the different views
of sequence diagrams to specify different activities, the assumptions on our
semantics enforce that at any one time the behavior of a given thread of an
object is represented by only one diagram. To see this, note that for any two
different activities belonging to the swimlane of a given object one of the
following conditions holds:
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e either they belong to different concurrent subpaths of the path of activities
in that swimlane (which means that they are associated with different
threads of that object),

e or they belong to different subpaths depending on a conditional, such that
in any given execution, at most one of the paths is executed,

e or they belong to the same subpath but are separated by at least one
transition, meaning that one of the two is executed only after the other
has finished.

Note that we do not currently make any restrictions that would prevent a
designer from creating a model that may not be particularly intuitive or useful.
For example, the following situations might occur. Suppose we are given a
sequence diagram D containing objects O, P, and (. Suppose there is an
activity s.0 in the activity diagram, but no activity s.P. Then, in our formal
model, the sequence diagram is translated to three UML machines modeling
the behavior of O, P, and @, and the first of them, but not the second, is
executed when executing the system. What this means for the overall behavior
of the system depends on the sequence diagram. It may mean that object
O waits for a message from P indefinitely. Suppose now that, instead, the
activities 5.0, s.P, and s.Q) all occur in the activity diagram, but in such a
way that they are not concurrent. Then the three UML Machines are executed,
but not concurrently. Again what this means for the overall behavior of the
system depends on the sequence diagram. It may mean that object O waits
for a message from P or () indefinitely and that these are never executed, and
that therefore the activity modeled by O never finishes.

Although according to the UML specification statecharts can be used to
describe the behavior of various kinds of model elements, such as activities,
they are often used to describe the complete behavior of the objects in a given
class. This can also be achieved with our approach: One can use an activity
diagram which for each of the objects involved contains exactly one activity,
the behavior of which is given by a statechart, and where these activities are
synchronized in parallel using synchronization bars.

Furthermore, a subsystem instance contains a deployment diagram spec-
ifying the physical layer of the system. This information is exploited when
analyzing UML specifications under security aspects, as explained in Chap. 4.
A subsystem instance may specify a set of accepted messages, and may also
offer interfaces.

Abstract Syntax

A subsystem (instance)” S = (name(S), Msgs(S), Ints(S), Ssd(S), DA(S),
Ad(S), Sc(S), Sd(S)) is given by:

e the name name(S) of the system part modeled by the subsystem,

" By subsystem in the following we always mean subsystem instance.
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e a (possibly empty) set Msgs(S) € MsgNm of names of offered operations
and accepted signals,

a (possibly empty) set Ints(S) of subsystem interfaces,

a static structure diagram Ssd(S) (defined below),

a deployment diagram Dd(S),

an activity diagram Ad(S), and

for each of the activities in Ad(S), a corresponding interactive UML Ma-
chine act € Activity specifying the behavior of objects appearing in
Ssd(S) by defining the activities in the activity diagram. They may be
given directly as UML Machine rules, or as UML machines arising as
the formal semantics from the following kinds of diagrams: a (possibly
empty) set Sc(S) of statechart diagrams, a (possibly empty) set of se-
quence diagrams Sd(S), and the subsystems in Ssd(S). Each diagram
D € Sc(S) USd(S) has an associated name context(D), which in the con-
crete syntax is written next to it.

Note that a subsystem is only well-defined if it satisfies the consisteny condi-
tions listed below.

A static structure diagram [UMLO3, p. 3-34] D = (SuSys(D), Dep(D)) is
given by a set SuSys(D) consisting of objects or subsystem instances, and a set
Dep(D) of dependencies (dep, indep, int, stereo) defined in Sect. 8.1.2, except
that dep and indep may now be subsystems, rather than objects. We require
that the names of the subsystems or objects are mutually distinct. Note that
in UML, static structure diagrams are called class or object diagrams even
though they may contain not just class or objects, but also subsystems. In
our usage here, we follow a suggestion on [UMLO03, p. 3-34].

Consistency Between UML Diagrams
A subsystem S is called consistent if the following conditions are fulfilled.
Activities

For every activity act € Activity in a swimlane labeled O in the activity
diagram exactly one of the following holds:

There is a subsystem S € SuSys(Ssd(S)) with name(S) = act.
There is a statechart D € Sc(S) with O = Object, and context(D) = act.
We have act = D.O where D € Sd(S) is a sequence diagram with O €
Obj(D) and context(D) = act.

e The activity is defined directly as a UML Machine which accesses only the
input and output queues and attributes in its own swimlane, as required
in the definition of UMSs in Chap. 7.

Note that, in particular, several activities can be modeled by statecharts.
The above condition ensures that an activity is not modeled in more than
one way and enforces that at any one time the behavior of a given thread



224 8 Formal Systems Development with UML

of an object is represented by only one diagram. However, activities in the
same swimlane may access the same attributes of the object specified by the
swimlane.

Names of Behavioral Diagrams

For any two diagrams D, D’ € Sc(S) U Sd(S), the condition context(D) =
context(D') implies D = D'.

Object Communication

Each object modeled by a swimlane in S must appear exactly once in the
deployment diagram.

Each subsystem in the deployment diagram and each object in the deploy-
ment diagram must appear in the static structure diagram. For any «call » or
«send» dependency between subsystems or objects in the static structure dia-
gram there must be the same dependency between the components containing
the corresponding subsystems or objects in the deployment diagram.

For each statechart diagram S € Sc(S) the following conditions must hold:

e For each call action call(obj.e) (resp. send action send(obj.e)) in S, for an
object name obj, the object diagram C in S must have a «call» (resp.
«send») dependency from the object Objectg to the object obj or one of
its interfaces supplying the operation msgnm(e) (resp. able to receive the
signal msgnm(e)). The types of the message specifications in the class
diagrams and those of the values in the statechart diagrams must match.

e For each assignment action att := exp in S, att is contained in the set of
attributes of Objectg given in C.

Similarly, for each sequence diagram S € Sd(S) the following condition
must hold: for each call action call(obj.e) (resp. send action send(o0bj.e)) sent
out from an object O € Obj(D) in S, for an object name obj, the object
diagram C in S must have a «call» (resp. «send») dependency from the
object O to the object obj or one of its interfaces supplying the operation
msgnm(e) (resp. able to receive the signal msgnmy(e)). The types of the
message specifications in the class diagrams and those of the values in the
sequence diagram must match.

Scope of Data

We define the notion of scope of a piece of data within a subsystem which
is needed to lift the definition of freshness of data in Sect. 7.5.5 to UML
specifications.

The idea is that the scope of a piece of data or key d € Data U Keys
within a subsystem diagram S is part of to an object or subsystem instance
C contained in § if d is initially under the control of C. More precisely, the
scope of d is contained in C in Sif d occurs within S at most in:
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e the object or subsystem instance representing C in the static structure
diagram contained in S,
the swimlanes belonging to C in the activity diagram contained in S,
the statechart diagrams contained in S that model parts of the behavior
of C, or

e (’s view 1, of the sequence of connections 1 in the sequence diagram
contained in S, as defined in Sect. 8.1.4.

Behavioral Semantics of Subsystems

The different subsystems and objects have their own input and output queues.
Recall that there is only one input buffer and one output buffer for a given
object or component. This buffer may be accessed in various ways — for exam-
ple, concurrent substates of a statechart diagram read from the same input
buffer and write to the same output buffer. That this happens consistently is
ensured by the semantics.

The run-to-completion step for each subsystem is performed in parallel,
each with its own dispatcher only dispatching events prefixed by the subsystem
name. This joint run-to-completion step is composed sequentially with the
execution of the scheduler that takes the events from the output queues of
the client subsystems requesting a service from another object and distributes
them to the input queues of the server subsystems requested to provide the
service. For the formal semantics of this we use the corresponding concepts
for UMSs defined for this purpose in Sect. 7.2.

Recall that following [KWO01, p. 15], we do not model the creation and dele-
tion of objects explicitly. A sufficient number of required objects is assumed
to exist at the start of the execution. The activation of objects is controled
by the activity diagram in the subsystem. An object that reaches a final state
within its top state is terminated and may be reactivated.

We give the formal behavioral interpretation for subsystems.

Suppose we are given a consistent subsystem S. The behavioral interpre-
tation of S is defined to be the UMS [S] = (name(S), Comp, Sched, Links,
Msgs) where:

e the set Comp C UMNames of UMS components is the set consisting of
the names of the components in the deployment diagram Dd(S), where
for each ' € Comp, its set Acty  of activities consists of the activities
appearing in the activity diagram Ad(S), and its set of attributes Att,, is
the union of the sets of attributes of its activities,

e Sched is the UML Machine [Ad(S)]*” modeling the activity diagram
Ad(S),

o Links is the set consisting of the links I € Links(Dd(S)) in the deployment
diagram Dd(S) and a link /g7 for any two (possibly coinciding) subsystems
or objects S, T residing on the same node in Dd(S), and

e Msgs is the set Msgs(S) of messages accepted by the subsystem S.
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By the assumption regarding activity diagrams in the section on consis-
tency between UML diagrams above, activities can thus be defined as sub-
systems, statecharts, or object views of sequence diagrams contained in the
subsystem S, or can be defined directly as a UML Machine.

As usual, we assume that the names of the UML Machines involved in
the above definition are renamed to avoid unwanted name-clashes, except for
the input and output queues. For the attributes referred to in any statecharts
above, we require more specifically that they are renamed by prefixing the
attribute name with the name of the object it belongs to. This way, different
statecharts modeling activities of the same object can all access its attributes.
Note that no conflicts arise from the shared access to attributes even by
concurrent activities, because according to the activity diagram semantics
defined in Sect. 8.1.5, they are executed by interleaving them.

We discuss an important property of our semantics.

Fact 8.1. During each given execution of a UML specification, each occur-
rence of a message is created at at most one location in the specification.

In particular, each occurrence of a call or send action in a statechart or a
message sent out in a sequence diagram adds a new occurrence of the cor-
responding message to the communication queues of the UMS modeling the
UML specification, rather than refer to an existing one. This follows from the
definition of the rules ActionRuleSCg(a) for a call or send action a and
ActionRuleSD(msg) for a message msg. Also, each occurrence of a message
is consumed at at most one location in the specification.

In that sense, a message cannot be referred to more than once. This feature
of our semantics is a restriction in so far as diagrams cannot be used in a way
that permits “overlapping” in time. This way, related consistency problems
within a single specification can be avoided.

8.2 Development with UML

Iterative development and modularity are two important concepts in system
development. We consider the corresponding technical tools, refinement and
rely-guarantee specifications, in the context of UML.

8.2.1 Refinement

System development is about turning an idea of what a system should ac-
complish into a product implementing the idea. This may be achieved by
constructing a first abstract system specification satisfying the given require-
ments and by applying a number of successive transformations that add more
detail while preserving the relevant requirements. This has been followed in
the approach of stepwise development [Dij68, Wir71], also called the top-down
approach. One advantage of this approach is that mistakes may be detected
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rather early in the development cycle, which may lead to considerable savings:
Late correction of requirements errors costs up to 200 times as much as early
correction [Boe81].

Changes to the system specification during the development process are
supported by refinements. A refinement relates two descriptions of the same
thing at two levels of detail, of which the more concrete one realizes the more
abstract one. Thus we have the corresponding notion of stepwise refinement: a
complex problem is decomposed into smaller subproblems and thereby simpli-
fied. Subproblems are refined step by step and integrated to solve the original
problem.

In practice, one often has to modify a part of a system to account for
changes in the environment of this part or in the requirements on it: iterative
development is an “incremental production of a series of prototypes, which
eventually evolve into the final implementation” [Boo91].

In the latter case, refinement is usually not assumed to provide full be-
havioral conformance [HG97, p. 40] or even to preserve the exact structure of
the refined subsystem. This applies in particular to the kinds of refinement
proposed in the context of UML:

e In UML, refinement denotes a certain kind of dependency relation® be-
tween model elements [UMLO03]. There is no constraint on the semantic
relationship between the model elements. Examples of refinements in this
general sense are state machine refinement and substitution. [UMLO03] gives
also some heuristics on how state machines can be refined. Refining state
machines corresponds to specializing the model elements whose behavior
the state machines model.

e There is a related kind of dependency called realization which specifies a
relationship between a specification model element and a model element
that implements it. The implementation model element is required to sup-
port all of the operations or received signals that the specification model
declares. Again there is no other constraint on the semantic relationship
between the model elements.

On the other hand, in situations requiring high confidence that certain
properties of a system are fulfilled, behavioral conformance of refinement can
help to save effort to gain this confidence by theorem proving, model checking,
simulation, testing, etc.. For example, this is the case when there are strin-
gent requirements on the security or safety of a system. The reasons are the
following:

(1) It is often easier to verify system properties at a rather high degree of
abstraction.

(2) If one has to make changes to the specification during the development
process, without any behavioral conformance one would have to redo all
the verification work which has been done earlier in the process.

8 More precisely, it is a kind of abstraction.
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Thus, formal methods research has traditionally focussed on refinements that
do preserve behavioral properties, for example in [Mil71, Hoa72, Jon72, Jon87,
AL91]. In the context of object subtyping, this has been advocated for example
in [LW94].

There seems to be a tension between flexibility of a refinement relation
and the gain from establishing that a specification refines another: The trivial
refinement relation that declares any system to be a refinement of any other
system can be applied quite widely but is not very useful. Our focus is on
the development of systems satisfying critical requirements, such as security
requirements. We thus try to find the right trade-off by giving several kinds of
refinement. Some of them strictly preserve the behavior of the system. Others
allow for a modification in the behavior which is controlled in a way that
allows one to reuse established knowledge on critical properties of the system.
Of these, the more liberal kinds of refinement are especially useful in the early
parts of system development, when the system is still subject to much change,
and from one iteration in an iterative development process to the next. The
stricter kinds are more useful in the later parts, when some properties have
already been established that should be preserved, and within one iteration
in an iterative process.

We introduce several kinds of refinement by referring to the correspond-
ing definitions in Chap. 7 through the formal semantics defined in previous
sections.

The strictest kind of refinement is called behavioral refinement. This is es-
sentially refinement by reverse subset inclusion of the sets of inputs and out-
puts. With variations on what part of the system behavior is included, there
are black-box refinement and white-box refinement. This kind of refinement
reduces the possible behaviors of the overall system and preserves all trace
properties, such as safety properties [AS85]. It also has pleasant structural
properties, and preserves security requirements as explained in Sect. 7.5.1.

Definition 8.2 (Black-box refinement). Suppose we are given UML sub-
systems S, S', tuples i and o of input and output names, and a set & C
Events. We say that S’ is a (delayed) E-(i,0)-black-box refinement of S if
the derived UML Machine Exec [S'] is a (delayed) £-(i, 0)-refinement of the
UML Machine Exec [S].

For example, given a set M C MsgINm of message names, one may con-
sider &-black-box refinements where £ ' {e € Events : msgnm(e) € M}.
One can thus use the set of message names M in order to hide the events
with different message names with respect to the refinement.

Fact 8.3. (Delayed) £-(i, 0)-black-box refinement of UML subsystems is a pre-
order for each set of events £ C Events and tuples i and o of input and output
names.

The next kind of refinement, white-box refinement, preserves the system
structure, such as the links between components, and considers the behavior
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of the components in a UML subsystem. In contrast, the black-box refinement
defined above only considers externally visible behavior.

Definition 8.4 (White-box refinement). The UML subsystem S’ is a (de-
layed) (i, o)-white-box refinement of the UML subsystem S if the derived UMS
[S'] is a (delayed) (i, 0)-white-box refinement of the UMS [S].

We show that white-box refinement is stronger than black-box refinement.

Fact 8.5. If the UML subsystem S’ is a white-box refinement of the UML
subsystem S then S’ is also a black-box refinement of S.

The following result can be derived from the corresponding result on UMSs
in Theorem 7.13.

Theorem 8.6. White-box refinement of UML subsystems is a precongruence
with respect to composition by subsystem formation.

Definition 8.7 (White-box equivalence). Two subsystem specifications
S and S' are (delayed) white-box equivalent if S is a (delayed) white-box re-
finement of S' and S’ is a (delayed) white-box refinement of S.

White-box equivalence can be used for example to verify consistency of two
subsystem specifications that are supposed to describe the same behavior, for
instance, one of which uses statecharts to specify object behavior, and the
other a sequence diagram.

Corollary 8.8. White-boz equivalence of UML subsystems is a congruence
with respect to composition by subsystem formation.

In practice, one often needs more flexible refinements that allow one to
modify the subsystem’s interface. Interface refinement is a looser kind of re-
finement which allows a change in the external interface of the part of the
system under refinement. To exhibit the extent to which behavioral proper-
ties are preserved under the refinement, interface refinement is parameterized
by system parts relating a system to its refinement.

Definition 8.9 (Interface Refinement). Given UML subsystems S and
S’ and a parameterized UML subsystem Z(Y), S’ is a (delayed) Z-interface
refinement of S if S’ is a (delayed) white-box refinement of Z(S).

This definition allows one to handle the trade-off between the generality of
a refinement relation and the degree to which it preserves system properties
in a very flexible way. It is motivated by the observation that, in practice, sub-
systems are often reused as part of their refinements. A well-known example
is the wrapper facade pattern where subsystems are refined by encapsulating
them in other subsystems [SSRBOO].
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Theorem 8.10. Each UML subsystem S is a Zd-interface refinement of itself,

where Zd()) def V.

For all UML subsystems S, S', and 8" such that S' is a T-interface refine-

ment of S and 8" is a T'-interface refinement of S', 8" is a T' o T-interface
def

refinement of S, where T' o Z(Y) = T'(Z(Y)).

A more liberal kind of refinement is that of a pattern-based transformation.
Patterns [GHJV95] encapsulate the design knowledge of software engineers
in the form of recurring design problems. Here the developer may construct
a refinement by applying a predefined transformation together with results
on the preservation of behavior provided by this transformation, which may
be either defined for this purpose or reused from other work. This kind of
refinement is the most application-dependent. We consider it in the context
of secure systems development in Sect. 4.3.

An extended example of the application of refinement is given in Sect. 5.1.

8.2.2 Rely-Guarantee Specifications

To reason about system specifications in a modular way, one may usefully em-
ploy rely-guarantee specifications. The following definitions are again adapted
from Chap. 7.

Definition 8.11. Given a UML subsystem S and sets R,G of sequences of
event multi-sets, we say that S fulfills the rely-guarantee specification (R,G)
if the derived UML Machine Exec [S] fulfills (R, G).

Theorem 8.12. Suppose that the UML subsystem S fulfills the rely-guarantee
specification (R,G) and that RNE = R and SNE = S.

If the UML subsystem S’ &-black-box refines S then S’ fulfills the rely-
guarantee specification (R,G).

If the UML subsystem S' delayed E-black-box refines A and G is stutter-
closed then S’ fulfills the rely-guarantee specification (R,G).

In particular, white-box refinement of UMSs preserves rely-guarantee spec-
ifications by Fact 8.5.

8.2.3 Reasoning About Security Properties in UML

We define a notion of black-box refinement that is relative to types of adver-
saries, using the corresponding Definition 7.24 for UMSs.

Definition 8.13. The UML subsystem T is a (delayed) black-box refinement
in presence of adversaries of type A of the UML subsystem S if the UMS [T]
is a (delayed) black-box refinement in presence of adversaries of type A of the

UMS [S].
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Again, the refinement relation is preserved by including the adversary
model.

Fact 8.14. Suppose we are given UML subsystems S and T such that T is a
refinement of S, and an adversary type A, such that the accessible knowledge
for A in B is no larger than that in A. Then the UMS B is a black-box
refinement in presence of adversaries of type A of the UMS A.

We also define the security properties on the level of UML subsystems.

Definition 8.15. We say that a UML subsystem S preserves the secrecy of
an ezxpression E € Exp (resp. of a variable v) from adversaries of type A
given inputs in & if the UMS [S] does.

S preserves the integrity of a variable v with respect to the set E of ac-
ceptable expressions from adversaries of type A given inputs in € if [S] does.

S provides (message) authenticity of a variable v with respect to its origin
o from adversaries of type A given inputs in & C Events if [S] does.

An atomic value d € Data U Keys in S is fresh within a component D
contained in S if the scope of d, as defined in Sect. 8.1.7, is contained in D.

S prevents down-flow (resp. up-flow) with respect to H if all UML Ma-
chines in [S] do.

We then have the following results similar to those in Sect. 7.5.

Theorem 8.16. Suppose we are given UML subsystems S and T .

If the UML subsystem S preserves the secrecy of E from adversaries of
type A and T is a black-boz refinement in presence of adversaries of type A,
or T (delayed) refines S given adversaries of type A such that the accessible
knowledge for A in B is no larger than that in A, then T preserves the secrecy.

If S preserves the integrity of v with respect to a set E C Exp of acceptable
expressions from adversaries of type A given inputs in € and T (0, {v})-black-
box refines S then T preserves the integrity of v.

If § provides authenticity of v with respect to its origin o from adversaries
of type A given inputs in £ and T is a (0,{v,0})-black-box refinement of S
such that the accessible knowledge for A in B is no larger than that in A, then
T B provides authenticity.

If S prevents down-flow (resp. up-flow) with respect to the set H C
MsgNm and T white-boz refines S then T prevents down-flow (resp. up-
flow) with respect to H.

8.3 Notes

The UML semantics in this chapter has been presented in [Jiir02a, Jir02d].
There has been a considerable amount of related work on a formal semantics
for various parts of UML. Our approach here differs from most other work on
UML semantics since usually diagrams are considered in isolation: For security
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analysis, they have to be considered together. In fact, the formal semantics for
subsystems including certain kinds of diagrams and their interactions seems
to be the only one published so far.

We can only mention some representative examples for related work. An
overview on formal approaches to systems analysis using UML is given in
[Whi00]. [FELR98, EFLR99] discuss some fundamental issues concerning a
formal foundation for UML. [KER99, RW99, RACHO0] point out some re-
lated problems. [BHH*97, BGHT97, BGH" 98] uses a framework based on
stream-processing functions to define a semantics for UML. [SW97] gives a
formal definition of UML’s package concept. [Kna99] gives a formal semantics
for UML interactions. [GPP98, EHHS00] employ graph transformations for
defining UML semantics. [LP99] gives a formalization of UML state machines.
[RACH00, RCAOQQ] give an approach using algebraic specification. [MS00]
translates UML class diagrams to B abstract machines. [MLO02] defines trans-
formation rules for OCL constraints into the formal method B. [BD0O0] gives a
translation of statecharts into the process algebra CSP. [BCR00, BCRO04] uses
ASMs for UML statecharts. [Cav00] also contains a formal semantics for other
kinds of diagrams. [OP00] considers interacting UML subsystems, but with-
out giving a formal semantics. [Ste0la] give a semantics for use case diagrams
based on transition systems. A combined formal semantics for UML state-
charts and class diagrams has been given in [RCAO01]. [Mer02, SKMO01] gives
a semantics for statecharts and show exemplarily how to check whether a set
of statecharts satisfies a collaboration. [RFBLOO1] constructs a UML virtual
machine. [Krii02] gives a formal foundation for services in UML and UML-
RT. [DGHO02] defines a translation of UML statecharts to UPPAAL timed au-
tomata. [ZG02] defines an extension of OCL with temporal logic. [vdB02] gives
a structured operational semantics for UML-statecharts. [Jan02] proposes a
probabilistic version of UML statecharts. [WS02] gives results on compile-
time scope resolution for statechart transitions. [VP03] applies an approach
for automated formal verification of model transformations to a transforma-
tion from UML statecharts to Petri nets. [BG03] examines UML actions and
activities. There has also been a significant amount of work on the semantics
for formalisms related to UML, including work regarding Message Sequence
Charts in [Krii00].

Refinements have been investigated in the object-oriented setting, for ex-
ample in [DB00, DS00a], where the introduced structural refinement has a
similar motivation to our interface refinement; for an overview see [DB01]. A
further discussion on refinement in UML can be found in [HK98]. [Weh02]
investigates behavioural subtypes in UML using refinement. [St603] considers
assertion, negation, and refinement in UML interaction specifications. [BB03]
defines a formal notion of refinement of UML diagrams.
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8.4 Discussion

We defined a formal semantics for a simplified part of UML using UML Ma-
chines and UML Machine Systems. It gives a precise meaning to groups of
diagrams of various kinds gathered in a special kind of UML subsystems.
Actions and internal activities are modeled explicitly, rather than treating
them as atomic given events. In particular, objects, and more generally sys-
tem components, can communicate by exchanging messages with parameters,
which can be used in the subsequent execution. The formal semantics pre-
sented in this chapter gives the basis for the tool support for security analysis
of UML specifications presented in Chap. 6. This allows us to reach general
insights about the properties checked by the tool, such as preservation under
refinement.

We gave supplementary results for formal UML development, such as con-
sistency conditions for different diagrams in a UML specification, and notions
of refinement, behavioral equivalence, and rely-guarantee specifications, which
enjoy nice structural properties, such as substitutivity. The formal semantics
delivers the required mathematical foundation to reason about subtle behav-
ioral properties such as security requirements. Since our semantics builds on
UML Machine Systems, it allows us to make use of the treatment of security-
critical systems in Sect. 7.5 to evaluate UML specifications for security in the
following chapters. In all, due to their flexibility, expressiveness, and precise-
ness, UML Machines appear to be an adequate tool to handle the complexities
both in defining a semantics for part of UML, and in dealing with subtle be-
havioral security properties.

While we considered only a core fragment of the UML syntax, we believe
that extending the work to include other aspects is possible. Note, however,
that this may cause an increase in complexity and therefore possibly a perfor-
mance penalty when performing tool supported checks on the UML models,
apart from the fact that “richer” UML models are not necessarily easier to
understand. Since the UML definition itself is inconsistent in several ways,
it is not possible to define a consistent semantics for all of UML as it is
presently defined. Our choice of a core UML notation is based on experiences
from several industrial application projects. This way we made sure that it
is sufficiently expressive for our purpose to develop security-critical systems,
which can also be seen from the case studies in Chap. 5.



Part IV

Epilogue



9

Further Material

In this chapter, we give a short overview of material related to the content
of this book. We start by listing some more material within the UMLsec
approach that had to be omitted for space reasons and then give an overview
of other approaches.

9.1 More on the UMLsec Approach

The following further material related to UMLsec has to be omitted here:

e [JiirO3b, Jiir04h] gives more detail on specification-based testing for critical
systems with UML.

e [Jiir02e] uses UMLsec to provide formally based development methods for
CORBA-based applications.

e [JirO2b, Jur03c, Jir03d, Jir04b, Jir03b, JirO4a, Jir04h] demonstrate
how to generalize the approach presented here to develop systems with
other criticality requirements, such as safety-critical, performance-critical,
or real-time systems, using an appropriate extension of UML.

e [Jiir02g] presents applications of UMLsec in the telemedicine application
domain, [JG03] in the automotive domain, and [JKO03] considers secure
mobile systems.

e [JPWO02] gives more results about using security patterns in model-based
development in the context of UMLsec.

e [JPWO03, PJWB03, BBHT03, Jiir04j] propose some development methods
for security-critical systems using UMLsec.

e [Jiir03a] explores the notion of algebraic state machines similar to the UML
Machines considered here, and applications to security.

e [JHO03, HJ03b] show how to combine the use of UMLsec with model-based
risk assessment.
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9.2 Other Approaches to Security Engineering

We give an overview of other approaches to security engineering using formal
methods or UML. Here we only give a general overview of topics relevant to
the main focus of the UMLsec approach; more specific references are given in
the notes sections of the preceding chapters.

9.2.1 Software Engineering and Security

Compared to research done using formal methods reviewed below, less work
has been done more generally using software engineering techniques for com-
puter security. Examples include [Eck95, EM97, DFS98], for an overview of
the topic see [DS00b]. [And94] suggests using software engineering techniques
to ensure security. In practice, penetration tests are commonly used to assess
the security of a system [Wei95]. [FH97] defines role-based access control rights
from object-oriented use cases, and [Fer98] presents a holistic view on Inter-
net security engineering. Work on security patterns includes [FP01, Sch03a].
The security of object-oriented systems has been considered for example in
[JKS95, SBCJ97]. The Tropos Requirements Engineering methodology is ex-
tended to cover security aspects in [GMMO03, MGMO03].

There is an increasing interest in the topic of software engineering and
security. In Germany, this is exemplified by the recent foundation of a related
national working group [Jiir03f].

9.2.2 Other Approaches Using UML

After the research on model-based security engineering using UML presented
in this book started in [Jiir0li], and after some earlier work on role-based
access control such as [FH97], there exist now several lines of research to-
ward using UML for security systems development. They seem to differ from
the one presented here that they usually aim to cover a less comprehensive
set of security requirements, mostly focussing on role-based access control re-
quirements. Also, most of them do not attempt to perform an analysis of the
security requirements based on a formal semantics of a simplified fragment of
UML.

[HF97] extends use cases and interaction diagrams to support distributed
system architecture requirements. [FH97] proposes a method determining role-
based access rights. Use cases are extended with rights specifications and the
rights of a role are derived from the use cases. The method thus enforces
the design principle of least privilege. Work on security patterns using UML
includes [Fer99, FPO1].

Some other approaches have been discussed at recent workshops on the
topic [JCFT02, JFS04, JRFF03]:
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[GFRO2] demonstrates how to use UML for aspect-oriented development
of security-critical systems. Design-level aspects are used to encapsulate
security concerns that can be woven into the models. In [GFR03], authen-
tication mechanism models are considered in an abstract aspect model and
more detailed models are created from these. The models can be composed
with primary decomposition models, allowing system architects to analyze
different mechanisms to realize a particular concern, such as authentica-
tion. [RFLGO3] proposes to use aspect-oriented modeling for addressing
access control concerns. Functionality that addresses a pervasive access
control concern is defined in an aspect. The remaining functionality is
specified in a so-called primary model. Composing access control aspects
with a primary model then gives a system model that addresses access
control concerns. [RLKF03, KRFL04] uses a variant of UML to model
Role Based Access Control and Mandatory Access Control and to com-
pose access control policy frameworks.

[HdBLS02] uses UML for the risk assessment of an e-commerce system
within the CORAS framework for model-based risk assessment [DRRT02,
FKG'02, AdBD*02]. This framework is characterized by an integration
of aspects from partly complementary risk assessment methods. It incor-
porates guidelines and methodology for the use of UML to support and
direct the risk assessment methodology as well as a risk management pro-
cess based on standards such as AS/NZS 4360 and ISO/IEC 17799. It uses
a risk documentation framework based on RM-ODP together with an in-
tegrated risk management and system development process based on UP
and offers a platform for tool inclusion based on XML. [HHO03b] presents
Security AssessmentUML, a UML profile for model-based security assess-
ments, as well as a security assessment process and its associated docu-
mentation framework. The main objective is to support documentation of
output based on risk identification and risk analysis in a security assess-
ment. The profile supports specification of concrete scenarios demonstrat-
ing how attacks may occur, as well as a combination of fault trees and
activity diagrams for analyzing the frequency of risks.

[FMMMPO02] uses UML for the design of secure databases. It proposes
an extension of the use case and class models of UML using their stan-
dard extension mechanisms designing secure databases. It uses an OCL-
based language for specifying security constraints called OSCL. The paper
demonstrates how to use the methodology to classify information into dif-
ferent sensibility levels and to specify which user roles will be able to access
the information.

[KPP02, BKL02] demonstrate how to deal with access control policies in
UML. The specification of access control policies is integrated into UML.
A graph-based formal semantics for the UML access control specification
permits one to reason about the coherence of the access control specifica-
tion.
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[Blo02] uses UML for modeling security-critical systems in the health sec-
tor. [LBD02, BDL03] show how UML can be used to specify access control
in an application and how one can then generate access control mechanisms
from the specifications. The approach is based on role-based access control
and gives additional support for specifying authorization constraints.

[HHO3a] provides support for the use of UML with secrecy annotations
so that the code produced from the UML models can be be validated by the
Java information flow (Jif) language-based checker.

[AWO03] suggests a method for specifying access control policies with UML
use cases and proposes a methodology to resolve some issues of consistency
and completeness of access control specifications.

Internationally, several research projects exist now on the topic of se-
cure systems development with UML, including the European working groups
CORAS [Stg01], NEPTUNE [NEPO01], and DEGAS [DEGO1], as well as one
German project [Arc01].

9.2.3 Formal Methods Applied to Security

There has been extensive research in using formal models to verify secure sys-
tems. The main areas of formal methods application in this domain include
secure information flow and security protocols. Because of the amount of ma-
terial in this area, it is virtually impossible to present a complete overview,
and this is not attempted here.

[Lam73] drew attention to covert channels; this initiated early influen-
tial work on secure information flow in [GM82, GM&84]. An overview of se-
cure information flow and other formal security models can be found in
[McL94]. More recent approaches to secure information flow include [FG95,
FG97, Ald01, BFPR02, MS03, DHS03]. Other approaches were mentioned in
Sect. 7.6.

Many references attribute the approach for using formal methods to an-
alyze abstract models of cryptographic protocols as influenced by the early
reference [DY83]. Overviews of applications of formal methods to security pro-
tocols can be found in [Mea95, GSG99, Aba00, Mea00, SC01] and [RSG*01,
Chap. 9]. See there for those references that we have to omit here.

Roughly, one can try to classify the different approaches into the following
categories:

Intensional methods model the behavior of the protocol participants together
with an attacker who can perform well-defined actions such as eavesdropping,
storing, deleting, and inserting messages at a communication link, but is usu-
ally assumed not to be able to break cryptographic mechanisms. In these
approaches, one often starts with the specification of the protocol, which is
usually relatively straightforward. The security requirements are formulated
by referring to this specification. It is then established whether the possible
behaviors of the model give rise to violations of security goals. Towards this,
one can use different techniques.
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e State-space search is an approach for constructing and analyzing all poss-
ible attack scenarios used for example in model checking. Examples include
[MCF87, Kem89, Mea96, FGG97, MMS97, GL97, Eck98, JW01b, GOR02,
BMV03, KW04]. The process algebra CSP has been employed for example
in [Low96, LR97, RSGT01], and the process algebra CCS for example in
[DFGO00, FGMO03] There exist specification languages tailored to security
protocols, including [Low98, BMM99], which translate abstract protocol
models to low-level specifications that can then be verified.

e Proof-construction methods are used to establish the absence of attacks
relevant to the adversary model by mathematical proof, which may be
mechanically assisted or even automatic. Examples include [Sch96, Sch97,
Sch99b, TFHG99, Wei99, Gut00, BDNN01, NNS02, BBDT03, Her03,
Bla04]. [AG99] introduces the spi calculus. An inductive method of proving
protocols correct using the mechanical proof assistant Isabelle NPWO02] is
explained for example in [Pau98b]. [KAH99, Hei01] use the Software Cost
Reduction toolset. There has been some work using ASMs reported in
[BR97, BR9S]. In [Lot00], threat scenarios are used to formally develop se-
cure systems using the stream-based specification language Focus [BS01].
[PWO00] considers reactive systems that are secure in a cryptographic sense.

Eztensional methods focus more on the security requirements, rather than the
protocol specification. They often use specialized logics to model and analyze
security protocols, often by modeling the changing knowledge and beliefs of
the protocol participants during the execution of the protocol. Formulating
security properties is often intuitive and elegant, while specifying the proto-
col may be more indirect than with intensional methods. The most famous
example is probably the BAN logic, named after its inventors Michael Bur-
rows, Martin Abadi, and Roger Needham [BAN89]. In the BAN logic, one
can formulate statements such as “P sees X” (meaning that P has received
X), “P believes X” (P is led to believe that X is true), “X is fresh”, “K is a
good key for communication between P and Q”, and so on. One can use logi-
cal inferences to construct the set of statements which hold about a protocol
according to the logic. For example, if P receives X encrypted under the key
K, and also believes that K is a good key for communication with Q, then P
believes that Q said X. In particular, one can verify that a certain security
property, formalized as a BAN logic statement, holds for the protocol accord-
ing to the logic. There exist several extensions to the BAN logic, including
[GNY90, SvO94, KN98]. An overview can be found in [SCO1].

A formal approach close to UMLsec is that using the computer-aided
software engineering (CASE) tool AuToFocus [BHPT97, HMR198, SH99,
RJWT03].1

Similar to the UMLsec approach presented in this book, cryptographic sys-
tems can be specified with diagrams similar to UML sequence diagrams and

! A German introduction is contained in [BS03].
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statecharts and examined for security weaknesses using the model-checker
SMV included in AutoFocus [JW01b, WWO1]. Additionally, the specifi-
cations can be simulated or tested. In a particular application [VWWO02],
a secure electronic purse application for personal digital assistants (PDAs)
has been developed using the AUTOFOCUS approach following a development
process based on the Common Criteria [CCO01]. [vOL02] uses AuTOFOCUS to
perform formal security analyses using Isabelle [NPW02] in a state machine
model.

Related to the work using AUTOFOCUS is research using the formal method
Focus involving stream-processing functions, on which AuUTOF0CUS is based.
[Lot97] uses threat scenarios to develop secure systems. [Jiir0lg] extends Fo-
CUS by cryptographic operations including symmetric and asymmetric encryp-
tion and signing. [Jiir01b] examines composability of secrecy. [Jiir00] considers
secure information flow.

Unfortunately, due to a perceived high cost in personnel training and use,
formal methods have not yet been employed very widely in industrial devel-
opment [Hoa96, Hei99, Sch00, AR00b, KK04].

9.2.4 Other Non-functional Requirements

[LLK*02] proposes a basis for partially automated risk analysis in early
development phases with UML. [PMP01, BDCL*01, HG02, HTB03] pro-
pose to use UML for safety-critical or dependable systems development.
[Pat02] presents a methodology to extend the OMG General Resource Mod-
eling sub-profile to model component faults in a UML design. [Pet02] pro-
poses a strategy for a development of critical control systems using UML.
[FHH™03, Sel03] discusses the use of modeling techniques in critical systems
design. [CLM*03, LMMO03, vKSZ03] report on the usage of UML for real-
time systems. [XLL03, JHKO03] deals with software performance prediction
and Quality of Service aspects based on UML models.
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Outlook

The method for model-based development of security-critical systems pro-
posed here has been successfully applied in industrial projects involving Ger-
man government agencies and major banks, insurance companies, smart card
and car manufacturers, and other companies. The experiences made indicate
that the approach is adequate for use in practice, after relatively little training,
when compared to some of the heavy-weight formal methods approaches. As
a first introductory book in the young field of model-based security engineer-
ing, this book had to try to strike a balance between readers interested in just
using UMLsec as secure software engineers, and those wanting themselves as
researchers to contribute to the further development of the field, or wanting to
try to generalize these ideas to other application domains. Considering thus
that a significant part of the material presented here is not mandatory for
normal users of UMLsec and the associated tool support, we have made the
experience that on the basis of the material in this book, usage of UMLsec can
in fact be rather easily taught to developers in industrial practice. A begin-
ning has already been made in an ongoing series of tutorials on model-based
security engineering using UMLsec [Jiir04b].

Given the current state of computer security in practice, with many vul-
nerabilities reported continually, it is a promising idea to apply model-based
development to security-critical systems, since it enables developers who are
not experts in security to make use of security engineering knowledge en-
capsulated in a widely used design notation. Since there are many highly
subtle security requirements which can hardly be verified with the “naked
eye” even security experts may profit from this approach. Although the ap-
proach explained here puts some emphasis on the weaknesses arising from the
design level, it can also be used for analyzing code for security weaknesses,
as indicated in Sect. 6.4. It can also be combined with the analysis of data
arising during the execution of a system, such as security configurations, as
demonstrated in Sect. 6.3. The UMLsec approach even generalizes to other
application domains such as dependability, as mentioned in Sect. 9.1.
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Although we only used a core of UML and in a more disciplined way than
in average current industrial usage of UML in order to allow use of advanced
tool support, the industrial case studies presented in Chap. 5 indicate that
our usage of UML is sufficient for our needs. Since UML is widely taught,
even a more focused and disciplined use of UML is easier to learn and use
than a completely different notation. When analyzing a system for security
requirements, there may already be a specification in UML or enough knowl-
edge in UML available to enable constructing one without too much further
training, reducing costs. In particular, this approach is supported by tools for
automated analysis of UMLsec models presented in Sect. 6.2. This should as-
sist in transferring ideas and results from model-based security engineering to
industrial practice, in a way that complements the usual methods of quality
assurance by testing. Thus one can avoid mistakes that are difficult to find by
testing alone, such as breaches of subtle security requirements, as well as the
disadvantages of the “penetrate-and-patch” approach. Since preventing secu-
rity flaws early in the system life-cycle can significantly reduce costs, there is
a potential for developing securer systems in a cost-efficient way.
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Appendices



A

Towards UML 2.0

At the time of writing, the next major version of the Unified Modeling Lan-
guage, UML 2.0, is being finalized. In this chapter, we shortly sketch how to
accommodate the changes from the current version, UML 1.5, with respect to
the approach proposed in this book. A good introduction to UML 2.0 and a
list of the changes between the different UML versions is contained in [Fow04].

Most changes do not have a significant impact on our approach: For ex-
ample, object diagrams, which already exist in UML 1.5, are in UML 2.0
more explicitly defined. In UML 1.5, packages can be contained in class di-
agrams, while in UML 2.0 such diagrams are now independently named as
package diagrams. The UML 1.5 collaboration diagrams are called communi-
cation diagrams in UML 2.0. The UML 2.0 interaction overview diagrams are
a new kind of diagram integrating activity and sequence diagrams. — While in
UML 1.5, the activities in activity diagrams can already be defined using other
diagrams, such as sequence diagrams, this link can be made more explicitly
in UML 2.0 by actually including the sequence diagrams in the respective ac-
tivity states. Timing diagrams are a kind of diagram which is entirely new to
UML with version 2.0. These diagrams, which will be familiar to many hard-
ware engineers from electronic engineering, do not seem to be particularly
specific to secure software engineering.

Composite structure diagrams have been included in UML 2.0 from the
real-time UML-RT extension. They contain parts represented by rectangles
that may be connected by connectors drawn as lines between parts. These di-
agrams are useful for specifying component structures and hierarchies within
components. In that, they are similar to the static structure diagrams of
UML 1.5, which can contain subsystems that may themselves in turn con-
tain static structure diagrams, and to component models, which can be part
of deployment diagrams. Thus, stereotypes such as «secrecy», «integrity»,
«authenticity », and «high» defined for dependencies in static structure di-
agrams and deployment diagrams can also be applied to the connectors in
composite structure diagrams. Also, parts can be marked as « critical », such
as class models or subsystems in static structure diagrams. Although the
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UMLsec notation can be extended quite nicely to UML 2.0 composite struc-
ture diagrams, one should note that this information can already be expressed
in UML 1.5 static structure and deployment diagrams, so using UML 1.5 is
not a restriction in this respect. Note that while deployment diagrams and
component diagrams are integrated in UML 1.5, they are written in different
diagrams in UML 2.0.

UML 2.0 also adds quite a few new model elements for existing diagram
types. These include state machine extensions, gates in interaction diagrams,
and power types in class diagrams. They are not very particular to secure
software engineering but are also not in conflict with the UMLsec notation and
can be used within the context of the approach presented in this book without
any problems. Similarly, some existing model elements have been changed, but
most of these do not appear in our treatment in this book at all. In particular,
we do not make use of any UML 1.5 model elements that have been dropped
in UML 2.0. In UML 2.0 sequence diagrams, interaction frames extend the
guards used in UML 1.5 sequence diagrams to specify conditional behavior.
Again, this extension can be used with UMLsec as well, although it remains
to be seen in which situations the added expressivity outweighs the increase of
complexity in the notation. Stereotypes are in UML 2.0 more tightly defined
than before and exclude a previous usage as a kind of keywords, but include the
usage of stereotypes in UMLsec. Activity diagrams are defined more liberally
in UML 2.0 than before: While UML 1.x views activity diagrams formally
as a special case of statechart diagram, this imposes some constraints on the
structure of a diagram that are removed in UML 2.0, for example that forks
and joins have to match. To accommodate this liberalization, the semantics
is now formulated in a Petri-net style by referring to token flows. Swimlanes
can be multidimensional in UML 2.0 and are called partitions.
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The Semantics of UML Machine Rules

We give a formal definition for the semantics of UML Machine rules. It is
inspired by those for Abstract State Machines in [SSB01, BS00].

Definition B.1 (Update). An update for a UML Machine A is a triple (f,
ay,...,an), b), where f is an n-ary function name, and ay,...,a, and b are
elements of the base set of A.

Thus an update specifies that the interpretation of the function f in A has to

be changed at the arguments ay, ..., a, to the value b. An update set is a set
of updates.
For two update sets U, V, we define the update set U;V (U followed by
def

V) as follows: U; V = {(f,a,b) € U : =3c.(f,a,c) e VIUV.

A transition rule of a UML Machine produces, in any given state, an
update set for each variable assignment. Recursive calls to other rules are
allowed; thus it is possible that a rule has no well-defined semantics at all. For
the calculus that defines the semantics of transition rules in Fig. B.1 we need
some further technical definitions.

Given a UML Machine A, a term ¢t over Voc A, a state S of A and a
variable assignment ¢ which assigns the variables in ¢ to elements of the base
set X of A, we write |[t]]§ for the interpretation of ¢ over X in state S which
extends (.

We write ([z +— a] for the variable assignment which coincides with ¢
except, that it assigns the element a to the variable x. Thus:

o ([x—allv)=aifv=ux
e ([z — a](v) = ((v) otherwise.

For a rule R and n > 1, we write R™ for the rule seq R...R endseq that
iterates R n times.

Definition B.2 (Semantics of transition rules). The semantics of a tran-
sition rule R of a given UML Machine A with base set X in a state S with
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Fig. B.1. The semantics of UML Machine rules

respect to a variable assignment ( is defined as an update set U such that
[[R]]*g > U can be derived in the calculus in Fig. B.1, if such a set exists. Oth-
erwise, it is undefined.

Note that those rules from Sect. 7.1 whose semantics is not defined in
Fig. B.1 can be defined in terms of those that are listed in Fig. B.1. Note also
that there can be different update sets U such that |[R]]§ >U is derivable in the
calculus (because of the non-determinism introduced by the choose with do
rule).

It is possible that the update set [[R]]*g contains several updates for the
same function name f. Then the updates have to be consistent in the following
sense, otherwise the execution stops.

Definition B.3 (Consistent update set). An update set U is called con-
sistent if it satisfies the following property:

If (f,(a1,...,a,),b) € Uand (f,(a1,...,a,),c) € U, then b = c.

Thus a consistent update set contains for each function and each argument
tuple at most one value.

If an update set U is consistent, it can be fired in a given state. The result
is a new state in which there may be function names the interpretations of
which are changed according to U.

Definition B.4 (Firing of updates). The result of firing a consistent up-
date set U in a state S of the UML Machine A is a new state T of A satisfying
the following two conditions for each function name f € Voc A:
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o If(f,(a,...,an),b) €U, then [f]¥ (a1,-..,an) = b.
o If there is mo b with (f,(ay,...,a,),b) € U, then [f]% (a1,...,an) =
IIf]]S(ala"'aan)'

Definition B.5 (Run of a UML Machine). Let M be a UML Machine
with vocabulary X, initial state S, and main rule name R. Let ¢ be a variable
assignment. A run v € Run M of M is a finite or infinite sequence Sy, S1, ...
of states for X such that the following conditions are satisfied:

So=S.
For each n € N, if Sy, is the last element of the sequence 1 then
— for any update set U with [[R]]“g" > U, applying U leaves the state S,
unchanged, or

— there exists an inconsistent update set U with |[R]]§" >U.

e For each n € N, if Sy, is not the last element of the sequence r, then there
exists a consistent update set U with [R]]f" > U in Sy, such that Sp41 s
the result of firing U, and such that Sp41 # Sh.



Proofs

We give here proof sketches for the statements from Chaps. 5, 7, and 8. Note
that the proofs for the statements in Chap. 5 are performed with respect to
the formal definitions and results in Chaps. 7 and 8, rather than the informal
exposition in Sect. 3.3, and are thus deferred to the end of this chapter. Note
also that it is not intended to propose manual reasoning to establish secu-
rity analysis results as in Chap. 5 in the context of security engineering with
UMLsec in practice. Instead, tool support for analyzing UMLsec specifications
should be used as discussed in Chap. 6. Manual proofs are presented here to
demonstrate that UMLsec is suitable overall to express important security
properties in a way that allows detailed formal security analysis.

C.1 UML Machines

Ezample

Fact 7.4. For each sequence (I1,...,1,), [Sndr](li,...,I,) consists of those
sequences (O1,...,0y) that fulfill the following conditions, for each i €
{1,...,n}:

0O; C {transmit } .

The conditions that

ﬂ(IJLﬂLﬂflfl)fﬂ((fjtﬂLﬂfzfl)X{Send}) < z—]fQ*ﬂ(O]LﬂLﬂOkl)
for each j < i and that §(O1 W ... W O0;—1) < #([H W... W ;1)\ {send }
imply 40; > 0.

Proof. To see that the above characterization of the behavior of [Sndr](Iy,
..., In) is correct, one has to convince oneself that the given conditions
are necessary and sufficient for a sequence (O1,...,0,) to be contained in
[Sndr](li,...,1I,), for any sequence (I1,...,I,).
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We first consider necessity. The first condition is necessary, because
[Sndr]() only outputs messages transmit, on any input. The second condi-
tion is necessary, because the UML Machine only outputs a message for each
send that is received. The third condition is necessary because the UML Ma-
chine will output a message at execution round i provided that, firstly, there is
still a send message in the input queue that has not yet prompted a transmit
output, and, secondly, we have currState = Send, because any other input
received apart from send messages has already been consumed.

To consider sufficiency of the conditions, suppose we are given sequences
(O1,...,0y) and (I, ..., I,) such that the three conditions are fulfilled. Then
(O1,...,0,) is contained in [Sndr](li,...,I,), because from the two se-
quences we can construct an internal behavior of the UML Machine Sndr
with the sequence C; of contents of currState which produces the sequence of
outputs (O1,...,0,,) given the sequence of inputs (I,...,[,): for each i, if
O; = {transmit } then C; = Send, otherwise C; = Wait.

C.2 Refinement

Fact 7.8. (Delayed) £-(i,0)-refinement of UML Machines is a preorder for
each set of events £ C Events and tuples i and o of input and output names.

Proof. We show that (delayed) £-(i,o0)-refinement is reflexive for each set
of events £ C Events and tuples i and o of input and output names. For
any UML Machine A, any set £ C Events, tuples i and o of input and
output names, and sequence I of event multi-sets, we have [A]; o(I)E C
[Ali,o(I)E and [A]; o(I)NE C [A]i o(I)E since C and C are reflexive.

We show that (delayed) &-(i, 0)-refinement is transitive for each set of
events £ C Events and tuples i and o of input and output names. Sup-
pose we are given the UML Machines A, A’, and A", tuples i and o of in-
put and output names, and a set £ C Events, such that A’ (delayed) &-
(i,0)-refines A and A" (delayed) &-(i,0)-refines A’. To show that A" (de-
layed) &-(i,0)-refines A, suppose we are given a sequence I = Iy,..., [, of
event multi-sets with [J, [/;] C €. We have to show that [A"]; o(I)~E C
[Ali,o(MNE and [A"];,0(I)E C[A]i,o(I)NE. By assumption, we know that
we have [A']i,o(I)NE C [Ai,o(I)NE and [A"]i o(I)NE C [A']i,0(I)NE, and
[ATio(MNE C[Aio(I)NE and [A"]i o(D)AE C[A'Tio(I)NE. We can con-
clude by transitivity of C and C.

Fact 7.10. If the UMS A’ is a refinement of the UMS A then the UML
Machine Exec A' is a refinement of the UML Machine Exec A.

Proof. Suppose we are given UMSs A’ and A such that A’ is a refinement of
A. We need to show that the UML Machine A’ is a refinement of the UML
Machine A.
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The link structures of A and A’ are the same by definition of refinement for
UMS:s. It is thus sufficient to show that each sequence of contents of the family
of link queues (linkQu 4/ (I))ieLinks ., is also a sequence of contents of the family
(linkQu 4 (7)) 1eLinks 5 - This follows from the assumption that A’ is a refinement
of A and from the definition of refinement of UMSs, which implies that there
are bijections b and bz as in Definition 7.9 such that for each component
C € Comp, and activity A € Act, the UML Machine of be(A) is a (i, 0)-
refinement of the A Machine where i = AttZ' and o = i U {finished}.

Fact 7.11. Refinement of UMSs is a preorder.

Proof. We show that refinement of UMSs is reflexive. For any UMS A =

(Comp 4, Sched 4, Links 4, Msgs 4 ), the identity functions b def i Comp, —
Comp 4 (and similarly the b¢) fulfill the required conditions by Fact 7.8.

We show that refinement of UMSs is transitive. Suppose we are given UMSs
A = (Comp,, Schedy, Linksy, Msgsy), A" = (Comp 4, Sched 4, Links,
Msgs 4/ ), and A" = (Comp 4./, Sched 4, Links 4, Msgs 4..), such that A’ refines
A and A" refines A'. Thus we have bijections b : Comp 4 — Comp 4 and b’ :
Comp 4, — Comp 4 (and similarly for the b¢) fulfilling the above conditions.
To show that A" refines A, we note that the bijection ¥’ o b : Compy —
Comp 4 (and similarly the b¢) fulfills the conditions as well, by Fact 7.8.

Fact 7.12. Suppose we are given a parameterized UMS A (Y1, ..., Vn), where
the activity variable YV; belongs to the component C;, for each i =1,...,n, and
that we are given UMSs A; and A} for each i.

If for each i = 1,...,n, Exec A} is a (i;,0;)-refinement of Exec A;
where 1; = Atté and o; = 1; U {finishedgxec 4,} then A(ExecA],...,
Exec A) is a refinement of A (Exec Ay,...,ExecA,).

Proof. Suppose we are given a parameterized UMS A (Y1, ...,YV,), where the
activity variable ); belongs to the component C;, for each i = 1,...,n, and
that we are given UMSs A; and A] for each i. Suppose that Exec A is a
(i;, 0;)-refinement of Exec A; where i; = Atté and o; = ;U {finishedgxec 4, },
for each i = 1,...,n. We have to show that A (Exec A}, ..., Exec A!,) is a
refinement of A (Exec Ay, ..., ExecA,).

Firstly, we have Msgs 4 (4, ..., 4,) = Msgs 4 = Msgs 4 4/ .. 4 ) by construc-
tion.

Secondly, we have the bijections mapping A; to A} for each i and being
the identity on the other activities; they fulfill the required conditions by
supposition on the 4; and Aj.

Theorem 7.13. Refinement of UMSSs is a precongruence with respect to com-
position by system formation.

Proof. This follows from Facts 7.11 and 7.12.

Corollary 7.15. FEquivalence of UMSs is a congruence with respect to com-
position by system formation.
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Proof. This follows from Theorem 7.13.

Theorem 7.17. Each UMS A is a Ld-interface refinement of itself, where
def

Zd(y) = V.
For all UMSs A, A', and A" such that A’ is a Z-interface refinement of A

and A" is a T'-interface refinement of A', A" is a ' o T-interface refinement
def

of A, where T' o Z(Y) = I'(Z())).
Proof. Suppose we have a UMS A4 and define Zd()) def Y. Then we have
Zd(A) = A which is a refinement of A by reflexivity of refinement (see
Theorem 7.13). Thus A is a Zd-interface refinement of itself.

Suppose we have UMSs A, A’, and A" such that A’ is a Z-interface refine-

ment of A and A" is a Z'-interface refinement of A’, and define Z' o Z(Y) def
Z'(Z(Y)). Then we have 7' o Z(A) = T'(Z(.A)). By assumption, we know that
A’ is a refinement of Z(A) and that A" is a refinement of Z'(A’). By substi-
tutivity of refinement, we derive that Z'(A’) is a refinement of Z'(Z(.A)), and
by transitivity of refinement, this implies that A" is a refinement of Z'(Z(.A))
(see Theorem 7.13). Thus A" is a 7’ o Z-interface refinement of A.

C.3 Rely-Guarantee Specifications

Theorem 7.19. Suppose that the UML Machine A fulfills the rely-guarantee
specification (R,G) where RNE = R and GNE = G, and suppose E = {1 :
InE =1}.

If the UML Machine A’ £-refines A and A’ fulfills the rely-guarantee spec-
ification (R, E) then A’ fulfills the rely-guarantee specification (R, Q).

If the UML Machine A’ delayed E-refines A, G is stutter-closed, and A’
fulfills the rely-guarantee specification (R, E), then A fulfills the rely-guarantee
specification (R, G).

Proof. Suppose that the UML Machine A fulfills the rely-guarantee specifi-
cation (R,G) and the UML Machine A’ E-refines A, with RnE = R and
GNE = G. We need to show that A’ fulfills the rely-guarantee specification
(R, Q). Suppose we are given I € R. We need to show that [A'](I) C G. By
assumption on A, we know that [A](I) C G. By assumption on A’, we have
[AT(I) C [ATA)~E C [AJ(I)~E. Thus we may conclude that [A'](I) C G,
as required, since GN.E = G.

The proof for delayed refinement is analogous, using the fact that G is
stutter-closed to conclude that [A'](I) C G from the fact that [A'](I)C
[A](T) € G.
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C.4 Reasoning About Security Properties

Fact 7.21. Suppose we are given a UMS A, an adversary adv € Advers 4(A)
of type A, and an execution e € Run A,4,. Then after execution of e, knows
evaluates to K¢, (A).

adv

Proof. Suppose the execution e of 4,4, has been executed. We need to show
that an expression F is in the set which is the value of knows after execution
of e if and only if E € K¢, (A). This is, however, the case by definition of
e, (A).

adv

Fact 7.22. Given a UMS A and an adversary adv € Advers 4(A) of type A,
the set knows of Agqy evaluates to a subset of Ka(A), at any point.

Proof. Suppose we are given a system 4 and an expression E € knows. We
need to show that E evaluates to an element of K 4(A). Suppose we are given
an adversary adv € Advers4(A) and an execution e of Aug4,. By Fact 7.21,
we know that after execution of e, E evaluates to an element of K¢, (A).

Therefore, E evaluates to an element of K4 (A), by definition of K 4(A).

Fact 7.23. Given o UMS A with a name v and an adversary adv €
Advers 4(A) of type A, then during any run e € Run A,4,, the name v eval-
uates to an element of T4(A,v), at any point.

Proof. Suppose we are given a UMS A with a name v, an adversary adv €
Advers 4(A) of type A, and an expression £ € Exp which is a value of the
name v after an execution e of A. We need to show that E € Z4(A,v).
By the definition of Z%, (A,v), we know that E € I%, (A,v). Therefore,
E € ZTa(A,v), by definition of Z4(A,v).

Fact 7.25. Suppose we are given UMSs A and B such that B is a refinement
of A, and an adversary type A, such that the accessible knowledge for A in
B is no larger than that in A. Then the UMS B is a black-box refinement in
presence of adversaries of type A of the UMS A.

Proof. Suppose we are given UMSs B and A such that B is a refinement of A,
and an adversary adv’ of a given type A. We need to show that there exists
an adversary adv the UML Machine B,4, is a black-box refinement of the
UML Machine A,q4y.

Since the link structures of A and B are the same by definition of refine-
ment for UMSs, it is sufficient to show that each possible sequence of contents
of the family (linkQug())ieLinks;; Of multi-set names is also a possible sequence
of contents of the family (linkQu_4(?))icLinks, - This follows from the assump-
tion that B is a refinement of A and from the definition of refinement of
UMSs, which implies that there are bijections b and bc as in Definition 7.9
such that for each component C € Comp 4 and activity A € Act?', the UML
Machine of be(A) is a (i, o)-refinement of the A Machine where i = AttZ' and
o =1iU {finished4 }.
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Theorem 7.27. A UMS A preserves the secrecy of E against adversaries of
type A if and only if E ¢ Ka(A).

Proof. Suppose that we are given a UMS A, an expression £ € Exp, and an
adversary type A.

Firstly, we show that if A preserves the secrecy of E against adversaries
of type A then E ¢ K4(A). We proceed by contraposition. We assume that
we have E € K4(A). We need to show that .4 does not preserve the secrecy
of E against adversaries of type A. By definition of preservation of secrecy, it
is sufficient to show that there is an adversary adv € Advers4(A), an input
sequence i, and a sequence s € [Aaau]p, {knows} (1) such that one of the knowl-
edge sets in s contains E. By the assumption E € K4(A) and the definition
of Ka(A), we know that we have E € K’ (A) for some n € N. Thus there
is an adversary adv and an execution e of length n such that £ € K¢, (A).
Thus E € knows after the nth iteration of A,g, .

Secondly, we show that if £ ¢ K4(A) then A preserves the secrecy of E
against adversaries of type A. Suppose that E ¢ K 4(A). We need to show that
A preserves the secrecy of E against adversaries of type A; that is, for every
adversary adv of type A, input sequence i, and sequence s € [Aadv ], {knows} (1),
the knowledge sets in s do not contain E. Suppose we are given such an
adversary adv, input sequence i, and a sequence s € [Aadv]o {knows} (I). It
follows from Fact 7.22 that the knowledge sets in s do not contain E, since
we have E ¢ K4(A) by assumption on E.

Theorem 7.28. If the UMS A preserves the secrecy of E from adversaries of
type A and the UMS B (delayed) refines A, such that the accessible knowledge
for A in B is no larger than that in A, then B preserves the secrecy of E from
adversaries of type A given inputs in .

Proof. Suppose we are given a UMS A that preserves the secrecy of a given
expression E from adversaries of type A given inputs in £ for £ C Events.
Suppose that the UMS B refines A. We need to show that B preserves the
secrecy of E from adversaries of type A given inputs in &.

Suppose we are given an adversary adv € Adversg(A) and an execution e
of Baay- Since B refines A, we have adv € Advers 4(A), and e is an execution of
Aadv, as far as observable to the adversary (up to stutter-equivalence, in the
delayed case). Since 4 is assumed to preserve the secrecy of E, we conclude
that B does, as well.

Theorem 7.29. If the UMS A preserves the secrecy of E from adversaries
of type A and the UMS B is a black-bozx refinement in presence of adversaries
of type A of the UMS A then B preserves the secrecy of E from adversaries
of type A.

Proof. This directly follows from the Definition 7.24 of black-box refinement
in presence of adversaries.
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Theorem 7.31. Each UMS A preserves the integrity of a variable v with
respect to a set E C Exp of acceptable expressions against adversaries of type
Aif Za(A,v) CE.

Proof. Suppose that we are given a UMS A, a variable v, a set £ C Exp of
acceptable expressions, and an adversary type A. We show that if Z4(A,v) C
E then A preserves the integrity of v respect to E against adversaries of type
A. Suppose that Z4(A,v) C E. To show that A preserves the integrity of
v with respect to FE, it is sufficient to show that for every adversary adv of
type A and every input sequence i, v does not contain a value a ¢ E at any
point. Suppose we are given such an adversary adv and an input sequence i
such that at some point, v has the value a. By Fact 7.23 we can conclude that
a € E, by assumption on Z4(A,v).

Theorem 7.32. Suppose we are given UMSs A and B. Suppose that A pre-
serves the integrity of v with respect to a set E C Exp of acceptable ex-
pressions from adversaries of type A given inputs in £ and that the UMS B
is a (0, {v})-black-boz refinement in presence of adversaries of type A of the
UMS A. Then B preserves the integrity of v with respect to E from adversaries
of type A given inputs in E.

Proof. Suppose we are given a UMS A that preserves the integrity of a given
expression v with respect to a set £ C Exp of acceptable expressions from
adversaries of type A given inputs in £ for & C Events. Suppose that the
UMS B (0,{v})-refines the UMS A. We need to show that B preserves the
integrity of v with respect to a set £ C Exp of acceptable expressions from
adversaries of type A given inputs in £.

Suppose we are given adv € Adversp(A) and an input sequence i. We need
to show that at no point of the execution of B,g4, on the inputs i, v takes on
a value not contained in E.

Since B (0, {v})-refines the UMS A. we have adv € Advers 4(4), and any
value of v in B is also a value of v in 4. Since A is assumed to preserve the
integrity of v, we conclude that at no point of the execution of B,4, on the
inputs 1, v takes on a value not contained in E.

Theorem 7.34. Suppose we are given UMSs A and B. Suppose that A pro-
vides authenticity of v with respect to its origin o from adversaries of type A
given inputs in £ and that the UMS B is a (0, {v, 0})-white-box refinement of
the UMS A, such that the accessible knowledge for A in B is no larger than
that in A. Then B provides authenticity of v with respect to its origin o from
adversaries of type A given inputs in &.

Proof. Suppose we are given UMSs A4 and B. Suppose that A provides au-
thenticity of v with respect to its origin o from adversaries of type A given
inputs in £ and that the UMS B is a (0, {v, 0o})-refinement of the UMS A.
We would like to show that B provides authenticity of v with respect to
its origin o from adversaries of type A given inputs in £, which means that for
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all adv € Adversg(A) and each input sequence i whose multi-sets only contain
elements in £, at any point of the execution of B,4, on the inputs i, v takes
on a value which appeared first within the execution outQu,, of all output
queues and link queues in B.

Suppose we are given an adversary adv € Adversp(A) and an input se-
quence i whose multi-sets only contain elements in £. Since B is a (0}, {v, 0})-
refinement of A, we have adv € Advers4(A) . Since A provides authenticity
of v with respect to its origin o from adversaries of type A given inputs in &,
we know that at any point of the execution of 4,4, on the inputs i, v takes
on a value which appeared first within the execution outQu,, of all output
queues and link queues in 4. Again, since B is a (0, {v,0})-refinement of A,
this means that that at any point of the execution of B,g4, on the inputs i,
v takes on a value which appeared first within the execution outQu,, of all
output queues and link queues in B.

Fact 7.38. For any expression E € Data U Var U Keys and any set of
expressions £, E is independent of £ if there exists no expression E' € £ such
that E is a subexpression of E'.

Proof. Suppose we are given E and £ as above such that there exists no
expression E' of which E is a subexpression. We show that E is independent
of £, that is F is not an element of the subalgebra A of Exp generated by £.
A is defined to be the subset of values Exp obtained by recursively applying
all operations of Exp starting with the set €.

For each set of expressions A C Exp let p(A4) be the property that there
exists no expression E’ in A such that E is a subexpression of E'. We prove
inductively that E ¢ A by showing that p(£) holds and that the validity of
p(A) is preserved by applying the operations of Exp pointwise to A:

e  We have p(€) by assumption.

e Assuming p(A4), we show by contraposition that for all a;,as € A, E is
not a subexpression of a; :: as. Suppose E is a subexpression of a; :: as
for some a;,a; € A. Without loss of generality, suppose that E is not a
subexpression of a;. Thus there exists a term ¢; which is equal to a; in
Exp such that F is not a subterm of ¢;. However, by assumption, F is a
subterm of ¢; :: ty for every term ¢ which is equal to ay in Exp. Since
E € DataU VarUKeys by assumption, E is thus a subterm of every such
to, by definition of the equations in Exp. Thus, F is a subexpression of
as, by definition of subexpression.

e Suppose p(A) holds. Then for every a € A, E is not a subexpression of
head(a). If E was a subterm of every term h that is equal to head(a) in
A, then FE is also a subterm of every term ¢ that is equal to a in A, because
the head of every such term ¢ is such an h. An analogous argument applies
to tail(.).

e The cases for {_}_, Sign (), and Hash(-) can be treated analogously to
the one for _:: _. For Dec_(_) and &xt_(_) one needs to choose ay,as,t1,ts
such that ¢; and t» are minimal in length.
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Fact 7.39. For any expression E € Data U Var U Keys and any set of
expressions €& C Data U Var U Keys, E is independent of £ if and only if
E¢E.

Proof. This follows from Fact 7.38 since for E, E' € Data U Var U Keys, F
is a subexpression of £’ only if E = E'.

Fact 7.40. Suppose we are given an atomic value d € Data U Keys in a
UMS A which is fresh within a component D contained in A, an adversary
type A which does not have access to D and does not have d in its set K of
previous knowledge, and an adversary adv of type A. Then during any run
e € Run Ay, if at any state S in e an output or link queue outside D
contains d as a subexpressions, then there exists a state S’ preceding S in e
where outQup contains d as a subexpressions.

Proof. Suppose we are given an atomic value d € Data U Keys in a UMS
A which is fresh within a component D contained in A, an adversary type
A which does not have access to D, and an adversary adv of type A. We
would like to show that during any run e € Run A,4,, if at any state S in e
an output or link queue outside D contains d as a subexpressions, then there
exists a state S’ preceding S in e where outQuyp contains d as a subexpressions.

Assume that we a given a run e € RunA,4, and the first state S in
e such that outQup or an output or link queue outside D contains d as a
subexpression. It is sufficient to show that in .S, d is contained in outQup and
not an output or link queue outside D, as a subexpression. According to the
behavior of UMSs defined in Sect. 7.2, d can only appear as a subexpression in
outQup or in an output or link queue outside D after being inserted in a link
queue by the adversary or after being output by a part of 4. By assumption
on the capabilities and previous knowledge of the adverary, and since S was
assumed to be the first state of its kind, the first possibility is ruled out. By the
freshness assumption on d, and again by the assumption on S, the possibility
left is that in S, d is contained in outQup and not an output or link queue
outside D, as a subexpression.

Theorem 7.42. Suppose that the UML Machine A prevents down-flow (resp.
up-flow) with respect to the set H C MsgNm and that the UML Machine B
refines A. Then B prevents down-flow (resp. up-flow) with respect to H.

Proof. Suppose we are given UML Machines A, B and a set of message names
H C MsgNm, such that A prevents down-flow with respect to H and that
B refines A.

We have to show that B prevents down-flow with respect to H. Suppose
that we are given input sequences i, j of event multi-sets and output sequences
o € [B](i) and p € [B](j) with ig = jg. We have to show that oy = ppy.
Since B refines A, we know that o € [A](i) and p € [A](j). Since A prevents
down-flow with respect to H, this implies that oy = pg.

The case for prevention of down-flow is analogous.
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C.5 Formal Systems Development with UML

Fact 8.1. During each given execution of a UML specification, each occur-
rence of a message is created at at most one location in the specification.

Proof. We observe that the only ways in which a message can be newly intro-
duced into the communication queues of the UMS is via a rule
ActionRuleSCg(a) for a call or send action a or a rule ActionRuleSD(msg)
for a message msg: there is no usage in the formal semantics of the macro
tooutQu() except in these rules, the macro toinQu() is not used at all, and
there are messages added directly to the multi-sets inQu, outQu, or linkQu().
Also, in the definition of the behavior of UMSs in terms of UML Machines
in Sect. 7.2, no messages are newly added to the communication queues (but
only transferred between the queues).

Thus to any occurrence m; of a message m in any of the input, output,
or link queues of the UMS modeling the specification at a given point of its
execution, we can associate an occurrence l; of a call or send action in a stat-
echart or a message sent out in a sequence diagram, such that the occurrence
m; of m originated from the occurrence I; of the action (for i = 1,2). Con-
versely, each such occurrence l;, when executed, adds a new occurrence m;
of m to the communication queues, by the definition of the associated action
rule.

To see that each occurrence of a message is created at at most one location,
it is sufficient to see that no occurrence of a message is removed during the
execution of the UMS except when messages are consumed by its recipient.

For this we observe that in the formal semantics defined in this chapter,
an occurrence of a message is only removed from the communication queues
of a UML specification when it is consumed while it fires a transition at its
recipient. Also, in the definition of the behavior of UMSs in terms of UML Ma-
chines in Sect. 7.2, no messages are removed from the communication queues
(but only transferred between the queues).

Thus each occurence of a message is created at at most one location.

Fact 8.3. (Delayed) £-(i,0)-black-box refinement of UML subsystems is a
preorder for each set of events & C Events and tuples i and o of input and
outpul names.

Proof. This follows from Fact 7.8.

Fact 8.5. The UML subsystem S' is a white-box refinement of the UML
subsystem S then S’ is also a black-box refinement of S.

Proof. This follows from Fact 7.10.

Theorem 8.6. White-box refinement of UML subsystems is a precongruence
with respect to composition by subsystem formation.

Proof. This follows from Theorem 7.13.
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Corollary 8.8. White-box equivalence of UML subsystems is a congruence
with respect to composition by subsystem formation.

Proof. This follows from Theorem 8.6.

Theorem 8.10. FEach UML subsystem S is a ZLd-interface refinement of

itself, where Zd()) def V.

For all UML subsystems S, S', and 8" such that S' is a T-interface refine-

ment of S and 8" is a T'-interface refinement of S', 8" is a T' o T-interface

refinement of S, where ' o Z(Y) et (Z)).

Proof. This follows from Theorem 7.17.

Theorem 8.12. Suppose that the UML subsystem S fulfills the rely-guarantee
specification (R,G) and that RNE = R and SNE = S.

If the UML subsystem S' E-black-box refines S then S' fulfills the rely-
guarantee specification (R,G).

If the UML subsystem S' delayed E-black-box refines A and G is stutter-
closed then S’ fulfills the rely-guarantee specification (R,G).

Proof. This follows from Theorem 7.19.

Fact 8.14. Suppose we are given UML subsystems S and T such that T is
a refinement of S, and an adversary type A. Then the UMS B is a black-box
refinement in presence of adversaries of type A of the UMS A.

Proof. This follows from Theorem 7.25.

Theorem 8.16. Suppose we are given UML subsystems S and T .

If the UML subsystem S preserves the secrecy of E from adversaries of
type A and T is a black-box refinement in presence of adversaries of type A,
or T (delayed) refines S given adversaries of type A such that the accessible
knowledge for A in B is no larger than that in A, then T preserves the secrecy.

If S preserves the integrity of v with respect to a set E C Exp of acceptable
expressions from adversaries of type A given inputs in € and T (0, {v})-black-
box refines S then T preserves the integrity of v.

If § provides authenticity of v with respect to its origin o from adversaries
of type A given inputs in € and T is a (§,{v,0})-black-boz refinement of S
such that the accessible knowledge for A in B is no larger than that in A, then
T B provides authenticity.

If S prevents down-flow (resp. up-flow) with respect to the set H C
MsgNm and T white-boz refines S then T prevents down-flow (resp. up-
flow) with respect to H.

Proof. The results in this theorem follow from the corresponding results on
UMSs in Theorems 7.29, 7.28, 7.32, 7.34, and 7.42.
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C.6 Secure Channels

Proposition 5.1. The subsystem C preserves the secrecy of the variable d
from adversaries of type A = default with specified previous knowledge KY,
given inputs from Data \ K&.

Note that, intuitively, this proposition is obvious, because the adversary
cannot read the channels. We give the proof to illustrate how to apply the
formal framework.

Proof. We have to show that for every expression E which is a value of d at
any point, C preserves the secrecy of E.

We use Theorem 7.27. Since an adversary of type default cannot access
any of the components or links in C, we have Ka(C) = KY (because there is
no read access), and d takes values only in Exp \ K9 (because there is no
write access).

Thus for every expression E which is a value of d at any point, C preserves
the secrecy of E, by definition of preservation of secrecy.

Proposition 5.2. The subsystem C' is a delayed black-box refinement of C
in presence of adversaries of type A = default with

KP N ({KSY, KRty U {kn, {z = n}e, :2 € ExpAn €N}) =0

and for which Sz’gnK;l(k’ ::m) € K5 implies k' =k, for all m € N and
k' € Exp.

Proof. We have to show that for every adversary b of type A for the UMS
[C'] there exists an adversary a of type A for the UMS [C] such that the
derived UML Machine Exec [C'], is a delayed black-box refinement of the
UML Machine Exec [C],.

Note that K4(C') is contained in the algebra generated by K% U
{{Sz’gnK;l(ki 2 ) }ke} and the expressions {d :: n}k for inputs d: Firstly, the
adversary can obtain no certificate {{SignKF;l(k = j) ke } for k # kj, because
the Receiver object only outputs the certificates {Siganl (kj :: ) ks (for j € N)
to the Internet. Secondly, the sender outputs only messages of the form
{d :: n}; to the Internet, for inputs d and any k € Keys for which a certificate
{Sz’ganl(k 1) }ke has been received. Here k£ must be K,, since no other cer-

tificate can be produced (since the key K,;l is never transmitted). Note also
that kP = K9 since there are no components accessed by the adversary.

Also, the values that an adversary for C' may insert into the Internet link
may only delay the behavior of the two objects regarding outQue since the
adversary has no other certificate signed with Kg 1 and does not have access
to the key Kgl, and because of the transaction numbers used. Thus any other
value inserted is ignored by the two objects.

For any adversary b for C' we can thus derive an adversary a for C by
omitting insert and read commands such that the UML Machine Exec [C'],
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is a delayed black-box refinement of the UML Machine Exec [C], (since the
outputs to outQu¢ (resp. outQue:) are stutter-equivalent).

Proposition 5.3. The subsystem C' preserves the secrecy of the variable d
from adversaries of type A = default with

KN ({Ks L Kty U fkp, {z i ndi, c2 € ExpAn €N}) =0

and for which Sz’gnK;l(k’ :m) € K5 implies k' =k, for all m € N and
k' € Exp.

Proof. Since C preserves the secrecy of the variable d from default adver-
saries given inputs from Data \ K% by Proposition 5.1 and C’ is a delayed
black-box refinement of C given default adversaries with K% N ({K3*, Kg*,
K} U {{z:n}k:2 € ExpAn€N}) =0 and for which Siganl(k’) e K4
implies K = k' by Proposition 5.2, we can conclude that C’ preserves the
secrecy of the variable d from default adversaries with KN ({Kga, K~1}U
{{z =:n}k :z € Exp An € N}) =0 and for which Sigan—Al(R k') € K5 im-
plies K = &, given inputs from Data \ K}, by Theorem 8.16.

C.7 A Variant of the Internet Protocol TLS

The Flaw

Theorem 5.4. For given C and i, the UML subsystem T given in Fig. 5.8
does not preserve the secrecy of s; from adversaries of type A = default with
{Ks, K4, K31} C K5,

Proof. We show the existence of a successful attacker adv. We fix instances
C and S with execution rounds i and j (where S; =S) and denote the link
between C and S as Ics.

The adversary adv proceeds as follows:

e A message of the form S.init(N;, Kc,Siganl(C 2 K¢)) in Ics is replaced by
the message S.init(N;, KA,SignKzl(C i Ka)); that is, the public key K¢ of
C is replaced by the public key K4 of A at each occurrence and as the
signature key.

e When S then sends back the message resp({Sz’gnKs_1(kj inity) by,

SignKa\l (S :: Ks)), using K4 to encrypt the session key k;j, adv can obtain k;
and replace the message by resp({SignKs—l (kj = init1) bk, Sz’gan_Al (S = Ks)).

e When C subsequently returns {s;}i;, adv can extract the secret s; (and
forward the message).

An adversary machine that achieves this is defined as follows:
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Rule Exec adv :
do — in — parallel
if linkQuy(Ics) = {e } A msgnm(e) = S.init
then linkQu(Ics) := {S.init(Arg, (e), K4,
SignKzl(fst(EmtArgZ(e) (Args(e))) = Ka)) }
if linkQu7(Ics) = {e } A msgnm(e) = C.resp then
do — in — parallel
finkQur-(Lcss) = {C.resp({Signy+ (Args () bicc, Args(e)) }
local := {{fst(Ext k., (DecKzl(Argl(e)))) 3
enddo
if linkQu(Ics) = {e } A msgnm(e) = S.zchd then
secret := {Deciocai(Arg,(e)) }
enddo

Thus the adversary gets to know the secrets C.s;.

The Fix

Theorem 5.5. Suppose we are given a particular evecution of the repaired
TLS variant subsystem T’ (including all clients and servers), a client C, and
a number I with S = Sy, and suppose that the server S is in its Jth execution
round in the current execution when C in its Ith execution round initiates the
protocol (that is, C.i=1 and S.j= J). Then this execution of T' preserves
the secrecy of C.s; against adversaries of type A = default whose previous
knowledge K fulfills the following conditions:

e we have
({c.sI, KL K1 U {Sk :j> J}
U{{SignKs—l(X 2 CNyKe)bke i X € Keys}) NKY =10

o for any X € Exp, Signg—1(C:: X) € K% implies X = Kc, and
C

o for any X € Exp, Signy—1(S : X) € K implies X = Ks.
CA

Proof. We use Theorem 7.27 from Sect. 7.5.2. We show the following claim.

e

Claim. For each knowledge set K¢, (A) for an adversary adv of type A af-

ter an overall ezecution e of T', whose previous knowledge K satisfies the

conditions in the above statement of the theorem, there exists a subalgebra X

that is minimal with respect to the subset relation among the subalgebras X of

Exp fulfilling the following two conditions," such that X contains K 4 (A).
Firstly, the following condition (1) is required to hold:

L K24, (A) is not contained in every such subalgebra X, because the actual messages
exchanged may differ depending on the adversary behavior.
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KP, U {c.Ni, Ke,Signi(c:: Ke) i€ NAce CIient}
U{Sigan_Al(s 1w Ks) is €Server A (s =S =K, = Ks)}

U{{c.si}k k€ KeysAie NAc e Client
AJK € Keys, E € Exp,E' € X
(Signu=: (B) € X A fst(E) = cS; Asnd(E) = K

NEotk (Decy -1 (E')) = (k,c.N;, Kc))}
C X.

Condition (2) requires that for each j € N and s : Server and for an
associated fized key k; s € Keys N X, a fized expression zjs € Exp, and a fized
nonce njs € DataN X with Sign,—1(zjs :: kis) € X,? we have

1S

{SignKs—l(s.kj NNys kLS)}kj)s e X.

Note that in the second condition, it can be the case that kj_s1 e Ke,, (A,

adv

but then ks # K¢ for any client ¢ (because Kg' ¢ K¢, (A) since KZt ¢ K}
and KZ1! is never sent out), and c¢ will notice that something is wrong in
the corrected protocol (and because the counter j is increased, the adversary
cannot make the server publish another signature with the same k; and the

correct Kc).

Proof of claim. Intuitively, the above claim holds because each knowledge set
K¢ 4, (A) is by definition the subalgebra of the algebra of expressions Exp built
up from K% in interaction with the protocol participants during the protocol
run e. To argue in more detail, we have to consider what knowledge the
adversary can gain from interaction with the protocol participants. From the
first message of a client c, the adversary can learn the expressions c.N;, K¢, and
Signy (c :: K¢). From the first message of a server s, the adversary can firstly
learn Sigan_Al (s :: Kq). Secondly, for each encryption key K € Keys in the
knowledge of the adversary such that the adversary knows Signyg-:(z :: K) for
some ¢ € Exp, and for each NV known to the adversary, the adversary learns
{Sz’gnKs_1(s.kj = vN :: K)}k € X, but only a unique such expression for a given
server s, protocol run e, and transaction number j, because the transaction
number | is increased as long as the protocol is iterated (this is reflected by
the fact that Xy is required to be minimal). From the second message from a
client ¢, for each encryption key K € Keys such that

. SignKa\l (E) is known to the adversary for an E € Exp with fst(F) = c.S;
and snd(FE) = K, and such that

% Note that condition (1) guarantees the existence of these unique expressions as-
sociated with each j € N and s : Server.
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e there exists £/ € Exp which is known to the adversary and such that
Entk(Decy—1(E")) = (k,c.Ni, Kc) for some k € Keys,

the adversary learns {c.si}x € X.

Since there are no other messages sent out by the specified system, the
claim holds by the definition of the adversary knowledge as the algebra gen-
erated by the exchanged messages and the initial adversary knowledge. This
completes proof of the claim.

Thus it is sufficient to show that C.s; ¢ X, for every X¢ defined above,
because K 4(A) et Uwde e KSgy (A) is contained in the union of all such Xo
by the above argument.7We aim for a contradiction by fixing such an X
and assuming that C.s; € Xy. X is defined to be a minimal subalgebra
satisfying the conditions (1) and (2) above. Recall that from the definition of
the algebra of expressions Exp in Sect. 3.3.3 as a free algebra it follows that
C.sy is different from any other expression not containing it, since no equation
with such an expression is defined. In particular, we have C.sy # c.s; for any
client ¢ and number i with ¢ # C or i # I. Thus the only occurrence in the
conditions defining Xy in a minimal way, where C.s; may be introduced as a
subterm, is in the requirement that X, contains {C.s; }x for each key k € Keys
for which there exist K € Keys, F € Exp, E' € Xj such that

Sigan—Al (E) € XoNfst(E) =S Asnd(E) =K
/\&EtK(DGCKc—l(El)) = (k, C.N[, Kc)

in condition (1). The assumption C.s; € Xy thus implies that there exists a
key k € Keys for which there exist K € Keys, E € Exp, E' € X, such that

SignK&l (E) € Xo ANfst(E) =S Asnd(E) =K
AEEtK(DGCKgl(El)) = (k, C.Ny, Kc)

By definition of Xy and assumption on K, the condition Sigan—Al (B) €
Xo A fst(E) = SAsnd(E) = K implies that K = Ks (since any expression
of this form in K% must satisfy this, and also any such expression introduced
in Xg). Similarly, E' € X, with ExtKS(Dechl(E’)) = (k, C.Nj, K¢) implies
k = S.k; for some j, because E' ¢ K% by assumption on the previous adver-
sary knowledge K%, because Kg ! is never communicated, and because the
expression {Siganl(S.kj 2 njs 2 Kjs) by, (in condition (2)) is the only expres-
sion with a subterm of the form Signks_l (k :: mjs 1t ki ¢) that is introduced (and
we can also conclude that njs = C.N; and kjs = K¢ in this term). Furthermore,
we can conclude j > J by the assumption that S is in its Jth execution round
when C is in its Ith round, and by the requirement that the C.N; should be
fresh (that is, each distinct from any other occurring value). Thus by assump-
tion on the previous adversary knowledge K, we have S.kj ¢ K, since j > J,
and thus the adversary must have learned S.k; in a protocol interaction. By
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the freshness assumption on S.kj, the only message containing S.k; is a term of
the form {Siganl(S.kj s i kjs) big,- By condition (2) and the minimality
of Xg, we know that njs = C.N; and kjs = K¢ for any such term by the above
observation. Therefore, this term has to be decrypted with K¢ Lin order to get
the S.k;. The only protocol participant that possesses KEl and that could thus
provide this service for the adversary is C (since the other participants do not
have K¢ Lin their initial knowledge, and Kc ! is never exchanged). However,
none of the values in {Siganl(S.kj 2 C.Ny :: K¢) }k. s ever sent out to the

network by C. Thus we must conclude that K le K*,, which contradicts the
initial assumption about K%.

One can see as follows that the adversary knowledge before each iteration
of the system satisfies these conditions as well:

(1) In the Ith execution round of the client C, no data of the form X.s; is
output except C.s;, which, as the theorem shows, is kept secret from the
adversary. The secret keys K 1 Kg ! (for each C, S) are never output at all.
The key S.K; is only sent out during the Jth executing round of S, and it
follows from the above theorem that in that round, the key is not leaked
to the adversary (because otherwise the adversary would gain knowledge
of C.s; by decrypting the contents of the xchd message). Similarly, an
expression of the form {Sz’gnKs_l(X 2 C.Ny it Ke) bk (for X € Keys) is
only output in the Ith execution round of C (and is of no use in any later
round).

(2) For any X € Exp, Sigan—l(C 2 X) is sent out only for X = Kc (and K¢*
is not sent out at all).

(3) For any X € Exp, Sz’gan_Al (S :: X) is sent out only for X = Ks (and K¢x
is not sent out at all).

Corollary 5.6. Any execution of T' over all clients and servers and all eze-
cution rounds preserves the secrecy of each C.sy (for C: Client and 1< 1<)
against adversaries of type A = default whose previous knowledge K% before
the overall execution of T' fulfills the following conditions:

e we have
({K;l, K_:l,c.si,s.kj, {Sz’gnKs—l(X N Kok, e
c:Client As:Server N1 <i<IAl §j/\X€Keys}) nKS =0,

o for any X € Exp and any c : Client, Sz’gan—l(c i X) € KY implies X = K,
and
e forany X € Exp and anys : Server, SignK&l (s X) € KF implies X = K.

Proof. Suppose we are given an execution e of 7', a client C, and a number
I. Then we have S; =S for a server S, and within the execution e, at the
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point where C.i = I, we have S.j = J for a number .J. Since the conditions on
the previous adversary knowledge in the current corollary imply those of the
previous theorem, we can thus directly apply the theorem.

C.8 Common Electronic Purse Specifications

C.8.1 Purchase Transaction
Vulnerability

Theorem 5.7. P does not provide merchant security against insider adver-
saries with {Signy—1(IDc ::Ke), Kot} € KR

Proof. We show the existence of a successful attacker adv. We assume that the

adversary has a certificate S igng-: (ID¢ ::K¢) and the corresponding private

key Kg,l (this should of course not be linked to the identity of the adversary
to avoid identification). We write Icp (resp. lpp) for the link between C and P
(resp. P and D). lap: is a link between the attacker and the PSAM P’. Thus:

Rule Exec adv :
if linkQup(Icp) = {e } Amsgnm(e) = P.Ccert
then
linkQup (lap) := linkQup (Icp);
|inkQu73(lcp) = {{P.Ccert(IDc/, Kc',Sigan—AlUDc' i KC/)) }
else
if linkQup(lcp) = {e } A msgnm(e) = C.Deb
then m := fst(DecKc_ll (Arg,(e)));
if linkQup (lap) = {e } A msgnm(e) € {C.Pcert, C.Deb}
then linkQup (Icp) := linkQuyp (lap );
if linkQup(lcp) = {e } A msgnm(e) = P’.Resp
then do — in — parallel
linkQup (lap) := linkQuyp (Icp)
linkQup (Ipp) := {D.Disp(m) }
enddo

Note that again we give a simplified presentation of the UML Machine
for increased readability. For example, according to the definition of an ad-

versary in Sect. 7.5, the command linkQup (Iap/) = linkQup (Icp) has to be
realized by using commands of the form read, ., (m) = m := linkQup (Icp) and
insert;, , (€) = linkQup (lap/) := linkQup (Iap/) W e }}, in a suitable iteration.

We explain how the attacker UML Machine proceeds. If a message with
name P.Ccert is sent over Ilcp, the adversary copies it to lopr and re-
places it in Icp by P.Ccert(ID¢/, Kc:,Sigan—Al(chz ::Ker)). Otherwise, if a mes-
sage with name C.Deb is sent over lcp, the adversary extracts the amount
fst(Dechll (Arg,(e))) from it and stores it in m. A message with name C.Pcert
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or C.Deb in lap: is copied to Icp. If Icp consists of a message with name P’.Resp,
the content of Icp is copied to lap and the message D.Disp(m) is sent to Ipp.

The above condition of merchant security is clearly violated: when exe-
cuting P in the presence of adv, D receives the value Myt, but P is not in
possession of Sigan—l(IDc #IDp::MyT::NT).

Proposed Solution

Proposition 5.8. P’ provides secrecy of Kgl, K;l and integrity of Kgl, Kc,
Kca, ID¢, K;l, Kp, MnT, SKnT, NT (meaning that the adversary should not
be able to make the atttributes take on values previously known only to him)
against insider adversaries with Ki N{K', Kz} = 0.

Proof. For an adversary to gain knowledge of K 1 Kp ! the adversary would
have to read these expressions from one of the two communication links. We
therefore have to consider, if at any point any of the two expressions is com-
municated over any of the two communication links. According to the spec-
ification, none of the values is output by any of the protocol participants at
any time. Therefore secrecy of K¢ L K;l is provided since these values are
never sent outside the smart cards (which under the current threat scenario
are assumed to be impenetrable).

For the adversary to violate the integrity of any of the attributes K 1
Kc, Kca, IDc, KF_,l, Kp, MnT, SKnT, the adversary would have to cause their
values to take on an atomic value in Data®, during the interaction with the
protocol participants. In particular, their values would have to change. From
the protocol specification, we can see that the value of none of these attributes
is changed at all during the execution of the protocol. Thus their integrity is
preserved.

Similarly, for the adversary to violate the integrity of the attribute NT,
the adversary would have to cause its value to take on an atomic value in
Data“, during the interaction with the protocol participants. From the pro-
tocol specification, we can see that the value of NT is changed only to take
on values of the form 0, 0+ 1, 0 + 1 + 1, etc., all of which are not in Data®.
Thus the integrity of NT is preserved.

Theorem 5.9. Consider adversaries of type A = insider with
K%, N ({Kgl, K5',KZ1} U {SKnt : NT € N}
U{Siganl(E) :E € Exp} U {Sigan_l(E) : E € Exp}
U{Signsuy(E) : F € Exp ANT € N}) =0
and such that for each X € Exp with Sigan_Al (X::K) € K&, X =IDc implies

K =K¢ and X = IDp implies K = Kp. The following security guarantees are
provided by P’ in the presence of adversaries of type A:
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Cardholder security: For all IDc, IDp, My, NT, KEl such that K¢ is valid for
IDc, if P is in possession of Siganl(ch::le::MNT::NT) then C is in
possession of Sz’gnK;l(MNT::SKNT::IDp::IDc::NT) (for some SKnT and
K;l such that the corresponding key Kp is valid for |Dp ).

Merchant security: Each time D receives the value My, P is in possession of
SignKE;(ch :Ke) and SignK€1(|Dc :1Dp :: Myt ::NT) for some IDc, Kgl,
and a new value NT.

Card issuer security: After each completed purchase transaction, let S be the
sum of all Myt in the sequence consisting of the processed elements of the
form Sz’gan_l(IDc::IDp::MNT::NT) (with possibly varying D¢, 1Dp, and

KEl, such that the corresponding key K¢ is valid for IDc and where the NT
are mutually distinct for fized C). Also, let S’ be the sum of all My, in
the sequence of processed SignK;l(M;\IT, ::SK\7 21D 2 IDpr s NT')  (with

possibly varying 1D¢:,|1Dp:, and K,;,l, such that the corresponding key Kp:
is valid for \Dp/, and where the NT' are mutually distinct for fived C').
Then S is no greater than S'.

Proof

Cardholder security: We proceed by contraposition. Suppose that (for any
SKnT, K;l such that the corresponding key Kp is valid for IDp) C is not in
possession of SignKl:l(MNT:CSKNT:CIDPCZIDC:CNT). We would like to show

that for every K¢ ! such that the corresponding key Kc is valid for ID¢, P is
not in possession of Sz’gan_l(IDc::IDp = MpnT::NT). We fix such ID¢, K¢, and
Kot

We consider:

e the joint knowledge set K of all participants except C (that is, the objects
P and D, and any given adversary, which according to the threat scenario
are not able to penetrate the smart card on which C resides) and

e the knowledge set K¢ of C.

Claim. K is contained in every subalgebra X of Exp containing
Keys \ {Kgl} U K% UData U
{{sz‘ganl(mc tidp :mzznt) e,
Signg (m:: {Siganl(ch::idp::m::nt)}sk) :
idp, kp, m, sk, nt,E € K¢ A Sz’gan—Al(idp =kp) € Kc

Nzt (E) = m::sk::idp :: 1D ::nt}.

Note that Signg, (m:: {Sigan—l (IDc::idp ::m::nt) }ok) is actually redundant,
but included for explicitness. Note also that it is not claimed that £ is actually
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the intersection of such algebras. For example, any of the above algebras (and
thus their intersection) contains the key K¢ ,i, although K does not. The latter
fact is nevertheless used in the proof (below when using the claim). A similar
remark applies to terms of the form Sigan_Al(lD::K). Note that K contains

SKnT, but not KZ* (as shown below).

The above claim holds because the knowledge set K is by definition the
subalgebra of the algebra of expressions Exp built up from the initial knowl-
edge by the protocol participants except C and any adversary in interaction
with C. We thus have to consider what knowledge the other participants can
gain from interaction with C. The expressions learned from the first mes-
sage from C are contained in X because X is assumed to contain all keys
K € Keys \ {K¢'}, and all data in Data. The expressions learned from the
second message from C are contained in X because X is assumed to contain
{Siganl(ch::idp::m::nt)}sk and Signsk(m::{SignK€1(|Dc::idp::m::nt)}sk)
for all idp,kp € K¢ with Sigan—Al(idp::kp) € K¢ and m,sk,nt, E € K¢ with
&ty (E) = m sk idp 2 IDe i nt, and because C' must receive the val-
ues idp,kp,Sz'gan—;(idp::kp),m,sk, nt, E before sending out the messages
{Siganl(ch idp imeint) bo and Signg (m : {Siganl(ch sidp rimeint) fek).

In particular, we have Kgl ¢ K, because the initial knowledge of P, D, and
the adversary does not include K ! and it (or anything it could be derived
from) is not transmitted.

Under the above assumption that Sz’gnK;l(MNT::SKNT:: IDp::IDc::NT) ¢
Kc (for any SKnt, Kp* such that the corresponding key Kp is valid for IDp),
we prove that such a subalgebra X with Sz’gan_l(IDc 2IDp Myt NT) ¢ X
exists. Let X be the Exp subalgebra generated by

G = Keys \ {K;'} UData U
{{Sigan—l(idc midpiiment) ek,
Signsk(m::{Siganl(idc::idp mment) bek)
(idc, idp, m, nt) 75 (|Dc, IDp, M, NT)}
By construction, X fulfills the above conditions, using the fact that the ad-
versary does not have access to K(_:/i (since it is not in the adverary’s initial

knowledge and it (or anything it could be derived from) is never transmitted)
and thus does not have access to terms of the form SignKal(idp :kp) unless

kp is valid for idp. Also, we have Sz’gan_l(IDc::IDp mMyTNT) ¢ X

Thus we have Signkgl(ch x2IDp::MpyT:NT) ¢ K.
Merchant security: Each time D receives the value My, P is in possession of
S’l‘gan—Al(ch::Kc) and Siganl(ch::le Myt ::NT) for some ID¢, Kgl, and
a new value NT.

By the specification of P (and the assumption of a secure communica-
tion link between P and D), D receives the value Myt only after P has
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checked the conditions in its part of the protocol; that is, P is in possession
of S’igan—Al (idc::ke) and S’igan—l(idC :21Dp :: Myt ::NT) for some idc. Newness
of NT in this expression is guaranteed since P creates the value itself by in-
crementing it between different runs of the protocol, and because the value is
prevented from rolling over.

Card issuer security: This follows from the proof of cardholder security.

C.8.2 Load Transaction
Vulnerabilities

Theorem 5.10. L does not provide load acquirer security against adversaries
of type insider with {cep,lda,m,} C K%.

Proof. An attacker may proceed as follows. The attack assumes a threat sce-
nario where the attacker may be (or collaborate with) the card issuer. Thus
it suffices to give a modification of the card issuer behavior that achieves
the goal of the attack, that is to successfully complete the protocol and
to possess a signature of the form ml, but with the changed amount m in
the end. The following modified card issuer specification J simply stores
Sign, (cep” ::nt" ::1da” ::m:s1” hey, ::hl'::h2l') instead of ml' in the logging
object ClLog:

Rule Exec J :
case currState; of
Init: do trans;(Load, (cep, lda, m, nt,s1, R, ml, hl, h2l),
valid(cep) A Extk,, (s1) = cep::lda:m::nt
/\EwtpecKLl(R)(ml) = cep:nt:lda:im:sl::
Hash(lda::cep::int::rcy) ::hl::h2l;
L.RespL(Signy, (cep::nl::sl::hl)), Load;
L.RespL(0), Fail)
Load: do trans;(Comp, (cep, Ida, m, nt, r2l, s3), true;
i.llog(cep, Ida, m, nt, r, ml, r21), Final; , )
Fail: do trans,([], [], true;i.llog(cep,lda, 0, nt,r, ml, 0), Final; ;)
Final: do finished := true

Here we use the macro
ml = Sign, (cep::nt::lda::M::s1::hcye ::hl::h2l)
Proposed solution

Proposition 5.11. L' provides secrecy of Kcy, K[l, Krl and integrity of Kcy,
K[l, Krl, cep, nt, rcy, Ida, n, rly, r2l,, m, (meaning that the adversary should
not be able to make the atttributes take on values previously known only to
him) against insider adversaries with K% N {Kc, KT, K71} = 0.
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Proof. Secrecy is evident since these values are never sent outside the smart
cards (which are under the current threat scenario assumed to be impenetr-
able).

Similarly, integrity of K¢, K[l, Kl_l, cep, rcnt, Ida, rly, r2l,, m, is evident
since these values are not changed during the execution of the specification.
Note that the secure definition of m,, (which is outside the current specifica-
tion) again relies on a secure connection between the terminal where the cash
is entered and the LSAM. Also, the creation of the random values rcy, rly,
r2l, is outside the current scope. Finally, integrity of nt (resp. n) in the sense
of Sect. 4.1.2 follows from the fact that the card (resp. the LSAM) changes
the value of nt (resp. n) during the protocol irrespective of the behavior of the
environment.

Theorem 5.12. In the presence of adversaries of type A = insider with
KA N {Ke, KT KT U {reae s nt € N} U {rlo, r2l, :n €N} =@
the following security guarantees are provided by L':

Cardholder security: For any message Clog(lda, m,nt,s2,rl) sent to c : CLog,
if m # 0 (that is, the card seems to have been loaded with m) then rl #0
and

Extk, (s2) = cep:nt::Signy  (cep::lda:im:nt)::
‘Hash(lda::cep::nt::rl)

holds (that is, the card issuer certifies tl to be a valid proof for the trans-
action). For any two messages Clog(lda, m,nt,s2,rl) and Clog(lda’, m’, nt’,
s2'.rl') sent to c : CLog, we have nt # nt'.

Load acquirer security: Suppose that we have ml, € K and rl, € K where
ml, = Siganl(cep::nt::Ida::mn msliyechlyh2ly) with hl, = Hash(lda::
cep ::nt:rly) and h2l, = Hash(lda::cep::nt::r2l,), for some cep, nt, sl,
and y. Then at the end of an execution of L either of the following two
conditions hold:

e a message Llog(cep,lda, m,, nt, ) has been sent to | : LLog (which im-
plies that L has received and retains m, in cash) or

e a message Llog(cep,lda,0,nt,z) has been sent to | : LLog, for some x
(that is, the load acquirer assumes that the load failed and returns the
amount my to the cardholder), and we have z' € K\ and z € K with
z= Sz'gnKl—l(cep::Ida::mn unt:y’) where y' = Hash(lda::cep::nt::z')
=y (that is, the load acquirer can prove that the load was aborted).

Card issuer security: For each message Clog(lda, m,nt,s2,rl) sent to c : CLog,
if m#0 and

Extk,, (s2) = cep:nt::Signy  (cep::lda::m::nt):
Hash(lda::cep::nt::rl)

holds for some lda, then the card issuer has a valid signature ml, corre-
sponding to this transaction.
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Proof.

Cardholder security: Suppose that the message Clog(lda, m, nt, s2, rl) has been
sent to ¢ : CLog, where m # 0. We need to show that rl # 0 and that

Extk,(s2) = cep::nt::Signy  (cep::lda::m::nt)::Hash(lda::cep::nt::rl)

holds. By assumption, the connection between C : Card and ¢ : CLog is secure
(since the objects are on the same smart card). This implies that C actually
sent the message Clog(lda, m,nt,s2,rl). According to the specification of C,
this can only happen if rl # 0 and if Extk,,(s2) = cep::nt::sl::hl holds, where
s1 = Signg,,(cep::lda:: m::nt) and hl = Hash(lda::cep::nt::rl).

Suppose the two messages Clog(lda, m,nt,s2,rl) and Clog(lda’,m’, nt’,s2’,

rl') have been sent to c : CLog. We need to show that nt # nt'. Again, by the
threat scenario we can conclude that C sent the two messages to c. Suppose
without loss of generality that Clog(lda, m,nt,s2,rl) was sent first. According
to the statechart specification for C, C reaches the final state immediately af-
terwards. According to the overall activity diagram given in the specification,
C starts a new protocol run only after nt is incremented (and rolling over is
not possible). Thus we have nt’ > nt + 1, in particular nt # nt'.
Load acquirer security: Suppose that we have ml, € K and rl, € K where
ml, = SignKL—l(cep::nt::Ida::mn::sl::y::hln::h2|n) with hl, = Hash(lda::cep::
nt::rl,) and h2l, = Hash(lda::cep::nt::r2l,), for some cep, nt, sl, and vy,
and that a message Llog(cep,0,nt,z) has been sent to |:LLog, for some
z. We need to show that there exist 2’ € K. and 2z € K with z =
Sz’gnKl_l(cep::Ida::mn int:y’) where y' = Hash(lda::cep:int:z') = y.

By the assumed threat scenario, the communication link between L and | is

secure (and according to the specification only L can send messages to |). This
implies that the message Llog(cep, 0, nt, z) to | : LLog originated at L. Accord-
ing to the specifications of L, this implies that L previously received a message
RespC(s3,z') with ' = z, 2’ # 0, and such that Hash(lda::cep::nt::z') =
y' for a value y' received in the message Respl(cep,nt,sl,y’) previously
in the same protocol run, and such that for the second argument of the
message Respl(s2,z) received immediately before RespC(s3,z'), &tk (z) =
cep::lda::my::nt::y’ holds (in particular we have z',z € K|).
Card issuer security: Suppose that the message Clog(lda, m, nt,s2,rl) was sent
to c: CLog, where m # 0 and Extk  (s2) = cep :: nt:: Signy  (cep::lda::m::
nt):: Hash(lda::cep::nt::rl) holds for some lda. We need to show that the card
issuer has a valid signature ml, corresponding to this transaction.

From the specification of C we see that C has received the message
Credit(s2,rl) just before in the same protocol run, and that Ertk,(s2) =
cep::nt::sl::hl holds, where s1:= Signy (cep::lda::m:nt) and hl :=
Hash(lda::cep::nt::rl). Since the key K¢ is kept secret by C and | (see
Proposition 5.11), we may conclude that | created s2. According to the specifi-
cation of |, this can only be the case if ml € K| with Eztk, (ml) = cep::nt::lda::
m::sl::hAcnt::hI::hQI.
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